[45ad7e]: / tests / test_countTable.py

Download this file

342 lines (309 with data), 13.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import unittest
from types import SimpleNamespace
import singlecellmultiomics.bamProcessing.bamToCountTable
from singlecellmultiomics.bamProcessing.bamBinCounts import range_contains_overlap,blacklisted_binning
class TestIterables(unittest.TestCase):
def test_blacklisted_binning(self):
bin_size = 250
blacklist = [(450,1001),(1007,1019),(1550,1600),(2300,2510)]
blacklist = sorted(blacklist)
self.assertFalse(
range_contains_overlap( list( blacklisted_binning(0,2000,bin_size,blacklist) ) + blacklist)
)
class TestCountTable(unittest.TestCase):
def test_total_read_counting(self):
""" Test if the amount of raw reads in a bam file is counted properly """
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
head=None,
o=None,
bin=None,
binTag='DS',
sliding=None,
bedfile=None,
showtags=False,
featureTags=None,
joinedFeatureTags='reference_name',
byValue=None,
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
minMQ=0,
filterXA=False,
dedup=False,
divideMultimapping=False,
doNotDivideFragments=True,
contig=None,
blacklist=None,
r1only=False,
r2only=False,
filterMP=False,
splitFeatures=False,
feature_delimiter=',',
noNames=False) , return_df=True)
# !samtools idxstats ./data/mini_nla_test.bam | head -n 1 | cut -f 3
self.assertEqual(df.loc['chr1'].sum(),563)
def test_total_read1_counting(self):
""" Test if the amount of valid deduped R1 reads in a bam file is counted properly
samtools view ./data/mini_nla_test.bam -f 64 -F 3840 | grep DS | wc -l : 210
"""
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
head=None,
o=None,
bin=None,
binTag='DS',
sliding=None,
bedfile=None,
showtags=False,
featureTags=None,
joinedFeatureTags='reference_name',
byValue=None,
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
minMQ=0,
filterXA=False,
dedup=True,
divideMultimapping=False,
doNotDivideFragments=True,
contig=None,
blacklist=None,
r1only=True,
r2only=False,
filterMP=False,
splitFeatures=False,
feature_delimiter=',',
noNames=False) , return_df=True)
# !samtools idxstats ./data/mini_nla_test.bam | head -n 1 | cut -f 3
self.assertEqual(df.loc['chr1'].sum(),210)
def test_contig_selection(self):
""" Test if a contig is selected properly"""
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
head=None,
o=None,
bin=None,
binTag='DS',
sliding=None,
bedfile=None,
showtags=False,
featureTags=None,
joinedFeatureTags='reference_name',
byValue=None,
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
contig='chr5',
minMQ=0,
filterXA=False,
dedup=False,
r1only=False,
r2only=False,
divideMultimapping=False,
doNotDivideFragments=True,
splitFeatures=False,
blacklist=None,
filterMP=False,
feature_delimiter=',',
noNames=False) , return_df=True)
# !samtools idxstats ./data/mini_nla_test.bam | head -n 1 | cut -f 3
self.assertEqual(df.sum().sum(),0)
def test_total_molecule_counting(self):
""" Test if the amount of molecules in a bam file is counted properly """
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
o=None,
head=None,
bin=None,
binTag='DS',
byValue=None,
sliding=None,
bedfile=None,
showtags=False,
featureTags=None,
joinedFeatureTags='reference_name',
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
minMQ=0,
filterXA=False,
dedup=True,
divideMultimapping=False,
doNotDivideFragments=True,
contig=None,
r1only=False,
r2only=False,
blacklist=None,
filterMP=False,
splitFeatures=False,
feature_delimiter=',',
noNames=False) , return_df=True)
# !samtools view ./singlecellmultiomics/data/mini_nla_test.bam | grep 'RC:i:1' | wc -l
self.assertEqual(df.loc['chr1'].sum(),383)
def test_singleFeatureTags_molecule_counting(self):
""" Test if the single feature counting feature works """
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
o=None,
head=None,
bin=None,
sliding=None,
binTag=None,
byValue=None,
bedfile=None,
showtags=False,
featureTags='reference_name,RC',
joinedFeatureTags=None,
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
minMQ=0,
filterXA=False,
dedup=False,
divideMultimapping=False,
contig=None,
r1only=False,
r2only=False,
keepOverBounds=False,
doNotDivideFragments=True,
blacklist=None,
filterMP=False,
splitFeatures=False,
feature_delimiter=',',
noNames=False) , return_df=True)
# !samtools view ./singlecellmultiomics/data/mini_nla_test.bam | grep 'RC:i:1' | wc -l
self.assertEqual(df.loc['chr1'].sum(),563)
self.assertEqual(df.loc['1'].sum(),383)
# Amount of RC:2 obs:
self.assertEqual(df.loc['2'].sum(),97)
def test_singleFeatureTags_molecule_counting_contig(self):
""" Test if the single feature counting feature works with -contig """
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
o=None,
head=None,
bin=None,
sliding=None,
binTag=None,
byValue=None,
bedfile=None,
showtags=False,
featureTags='reference_name,RC',
joinedFeatureTags=None,
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
minMQ=0,
filterXA=False,
dedup=False,
divideMultimapping=False,
contig='chr1',
r1only=False,
r2only=False,
keepOverBounds=False,
doNotDivideFragments=True,
blacklist=None,
filterMP=False,
splitFeatures=False,
feature_delimiter=',',
noNames=False) , return_df=True)
# !samtools view ./singlecellmultiomics/data/mini_nla_test.bam | grep 'RC:i:1' | wc -l
self.assertEqual(df.loc['chr1'].sum(),563)
self.assertEqual(df.loc['1'].sum(),383)
# Amount of RC:2 obs:
self.assertEqual(df.loc['2'].sum(),97)
def test_bed_counting(self):
""" Test if the bed feature counting feature works """
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
o=None,
head=None,
bin=None,
binTag='DS',
byValue=None,
sliding=None,
bedfile='./data/mini_test.bed',
showtags=False,
featureTags=None,
joinedFeatureTags='reference_name',
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
minMQ=0,
filterXA=False,
dedup=True,
divideMultimapping=False,
doNotDivideFragments=True,
contig=None,
r1only=False,
r2only=False,
blacklist=None,
filterMP=False,
splitFeatures=False,
feature_delimiter=',',
noNames=False) , return_df=True)
# !samtools view ./singlecellmultiomics/data/mini_nla_test.bam | grep 'RC:i:1' | wc -l
self.assertEqual( df.xs( 'test4',level='bname', drop_level=False).iloc[0].sum() , 1)
self.assertEqual( df.xs( 'test3',level='bname', drop_level=False).iloc[0].sum() , 383)
def test_byValue(self):
""" Test if the by value counting feature works, this counts the value of a feature instead of its presence"""
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
o=None,
head=None,
bin=30,
sliding=None,
binTag='DS',
byValue='RC',
bedfile=None,
showtags=False,
featureTags=None,
joinedFeatureTags='reference_name,RC',
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
minMQ=0,
filterXA=False,
dedup=False,
divideMultimapping=False,
contig=None,
blacklist=None,
r1only=False,
r2only=False,
filterMP=False,
keepOverBounds=False,
doNotDivideFragments=True,
splitFeatures=False,
feature_delimiter=',',
noNames=False) , return_df=True)
self.assertEqual( df.sum(1).sum(), 765 )
self.assertEqual( df.loc[:,['A3-P15-1-1_25']].sum(skipna=True).sum(skipna=True), 12.0 )
def test_byValue_binned_autofill_joined(self):
""" Test if the by value counting feature works, this counts the value of a feature instead of its presence"""
df = singlecellmultiomics.bamProcessing.bamToCountTable.create_count_table(
SimpleNamespace(
alignmentfiles=['./data/mini_nla_test.bam'],
o=None,
head=None,
bin=30,
sliding=None,
binTag='DS',
byValue='RC',
bedfile=None,
showtags=False,
featureTags=None,
joinedFeatureTags='reference_name,RC',
sampleTags='SM', proper_pairs_only=False, no_indels=False, max_base_edits=None, no_softclips=False,
minMQ=0,
filterXA=False,
dedup=False,
divideMultimapping=False,
contig=None,
blacklist=None,
r1only=False,
r2only=False,
filterMP=False,
keepOverBounds=False,
doNotDivideFragments=True,
splitFeatures=False,
feature_delimiter=',',
noNames=False) , return_df=True)
self.assertEqual( df.sum(1).sum(), 765 )
self.assertEqual( df.loc[:,['A3-P15-1-1_25']].sum(skipna=True).sum(skipna=True), 12.0 )
if __name__ == '__main__':
unittest.main()