[45ad7e]: / singlecellmultiomics / bamProcessing / bamMethylationCutDistance.py

Download this file

248 lines (190 with data), 9.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import matplotlib
matplotlib.rcParams['figure.dpi'] = 160
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import multiprocessing
from singlecellmultiomics.bamProcessing.bamBinCounts import generate_commands, count_methylation_binned
import argparse
from colorama import Fore, Style
from singlecellmultiomics.utils import dataframe_to_wig
from singlecellmultiomics.methylation import MethylationCountMatrix
from singlecellmultiomics.bamProcessing.bamFunctions import get_reference_from_pysam_alignmentFile
from colorama import Fore,Style
from collections import defaultdict, Counter
from multiprocessing import Pool
from datetime import datetime
import pysam
from singlecellmultiomics.bamProcessing import get_contig_sizes, get_contig_size
from singlecellmultiomics.bamProcessing.bamBinCounts import generate_commands, read_counts
def sample_dict():
return defaultdict(Counter)
def methylation_to_cut_histogram(args):
(alignments_path, bin_size, max_fragment_size, \
contig, start, end, \
min_mq, alt_spans, key_tags, dedup, kwargs) = args
distance_methylation = defaultdict(sample_dict) # sample - > distance -> context(ZzHhXx) : obs
max_dist = 1000
# Define which reads we want to count:
known = set()
if 'known' in kwargs and kwargs['known'] is not None:
# Only ban the very specific TAPS conversions:
try:
with pysam.VariantFile(kwargs['known']) as variants:
for record in variants.fetch(contig, start, end):
if record.ref=='C' and 'T' in record.alts:
known.add( record.pos)
if record.ref=='G' and 'A' in record.alts:
known.add(record.pos)
except ValueError:
# This happends on contigs not present in the vcf
pass
p = 0
start_time = datetime.now()
with pysam.AlignmentFile(alignments_path, threads=4) as alignments:
# Obtain size of selected contig:
contig_size = get_contig_size(alignments, contig)
if contig_size is None:
raise ValueError('Unknown contig')
# Determine where we start looking for fragments:
f_start = max(0, start - max_fragment_size)
f_end = min(end + max_fragment_size, contig_size)
for p, read in enumerate(alignments.fetch(contig=contig, start=f_start,
stop=f_end)):
if p%50==0 and 'maxtime' in kwargs and kwargs['maxtime'] is not None:
if (datetime.now() - start_time).total_seconds() > kwargs['maxtime']:
print(f'Gave up on {contig}:{start}-{end}')
break
if not read_counts(read, min_mq=min_mq, dedup=dedup):
continue
tags = dict(read.tags)
for i, (qpos, methylation_pos) in enumerate(read.get_aligned_pairs(matches_only=True)):
# Don't count sites outside the selected bounds
if methylation_pos < start or methylation_pos >= end:
continue
call = tags['XM'][i]
if call=='.':
continue
sample = read.get_tag('SM')
distance = abs(read.get_tag('DS') - methylation_pos)
if distance>max_dist:
continue
distance_methylation[sample][(read.is_read1, read.is_reverse, distance)][call] +=1
return distance_methylation
threads = None
def get_distance_methylation(bam_path,
bp_per_job: int,
min_mapping_qual: int = None,
skip_contigs: set = None,
known_variants: str = None,
maxtime: int = None,
head: int=None,
threads: int = None,
**kwargs
):
all_kwargs = {'known': known_variants,
'maxtime': maxtime,
'threads':threads
}
all_kwargs.update(kwargs)
commands = generate_commands(
alignments_path=bam_path,
key_tags=None,
max_fragment_size=0,
dedup=True,
head=head,
bin_size=bp_per_job,
bins_per_job= 1, min_mq=min_mapping_qual,
kwargs=all_kwargs,
skip_contigs=skip_contigs
)
distance_methylation = defaultdict(sample_dict) # sample - > distance -> context(ZzHhXx) : obs
with Pool(threads) as workers:
for result in workers.imap_unordered(methylation_to_cut_histogram, commands):
for sample, data_for_sample in result.items():
for distance, context_obs in data_for_sample.items():
distance_methylation[sample][distance] += context_obs
return distance_methylation
if __name__ == '__main__':
argparser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="""Extract methylation levels relative to cut site (DS tag) from bam file""")
argparser.add_argument('bamfile', metavar='bamfile', type=str)
argparser.add_argument('-bp_per_job', default=5_000_000, type=int, help='Amount of basepairs to be processed per thread per chunk')
argparser.add_argument('-threads', default=None, type=int, help='Amount of threads to use for counting, None to use the amount of available threads')
fi = argparser.add_argument_group("Filters")
fi.add_argument('-min_mapping_qual', default=40, type=int)
fi.add_argument('-head', default=None, type=int,help='Process the first n bins')
fi.add_argument('-skip_contigs', type=str, help='Comma separated contigs to skip', default='MT,chrM')
fi.add_argument('-known_variants',
help='VCF file with known variants, will be not taken into account as methylated/unmethylated',
type=str)
og = argparser.add_argument_group("Output")
og.add_argument('-prefix', default='distance_calls', type=str, help='Prefix for output files')
args = argparser.parse_args()
print('Obtaining counts ', end="")
r = get_distance_methylation(bam_path = args.bamfile,
bp_per_job = args.bp_per_job,
known_variants = args.known_variants,
skip_contigs = args.skip_contigs.split(','),
min_mapping_qual=args.min_mapping_qual,
head = args.head,
threads=args.threads,
)
print(f" [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
for ctx in 'zhx':
beta = {}
met = {}
un = {}
for sample, sample_data in r.items():
beta[sample] = {}
met[sample] = {}
un[sample] = {}
for distance, contexts in sample_data.items():
if ctx in contexts or ctx.upper() in contexts:
beta[sample][distance] = contexts[ctx.upper()]/(contexts[ctx.upper()]+contexts[ctx])
met[sample][distance] = contexts[ctx.upper()]
un[sample][distance] = contexts[ctx]
pd.DataFrame(beta).sort_index().T.sort_index().to_csv(f'{args.prefix}_beta_{ctx}.csv')
pd.DataFrame(beta).sort_index().T.sort_index().to_csv(f'{args.prefix}_beta_{ctx}.pickle.gz')
pd.DataFrame(met).sort_index().T.sort_index().to_csv(f'{args.prefix}_counts_{ctx.upper()}.csv')
pd.DataFrame(met).sort_index().T.sort_index().to_csv(f'{args.prefix}_counts_{ctx.upper()}.pickle.gz')
pd.DataFrame(un).sort_index().T.sort_index().to_csv(f'{args.prefix}_counts_{ctx}.csv')
pd.DataFrame(un).sort_index().T.sort_index().to_csv(f'{args.prefix}_counts_{ctx}.pickle.gz')
# Make plots
beta = {}
met = {}
un = {}
for sample, sample_data in r.items():
beta[sample] = {}
met[sample] = {}
un[sample] = {}
for distance, contexts in sample_data.items():
if distance[-1] > 500 or distance[-1] < 4: # Clip in sane region
continue
if ctx in contexts or ctx.upper() in contexts:
beta[sample][distance] = contexts[ctx.upper()] / (contexts[ctx.upper()] + contexts[ctx])
met[sample][distance] = contexts[ctx.upper()]
un[sample][distance] = contexts[ctx]
beta = pd.DataFrame(beta).sort_index().T.sort_index()
met = pd.DataFrame(met).sort_index().T.sort_index()
un = pd.DataFrame(un).sort_index().T.sort_index()
for mate in [True, False]:
for strand in [True, False]:
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
un[mate, strand].sum().rename('Unmethylated').plot(ax=ax1)
met[mate, strand].sum().rename('Methylated').plot(ax=ax1)
ax1.set_xlabel('distance to cut')
ax1.set_ylabel('# molecules')
ax1.legend()
(met[mate, strand].sum() / (un[mate, strand].sum() + met[mate, strand].sum())).rename('Beta').plot(
ax=ax2)
# ax2.set_ylim(0,0)
sns.despine()
ax1.set_title(f'Mate {"R1" if mate else "R2"}, strand:{"reverse" if strand else "forward"}')
ax2.set_ylabel('Beta')
plt.savefig(f'{args.prefix}_{ctx}_{"R1" if mate else "R2"}_{"reverse" if strand else "forward"}.png')
plt.close('all')