[45ad7e]: / singlecellmultiomics / bamProcessing / bamAnalyzeCutDistances.py

Download this file

674 lines (539 with data), 26.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from multiprocessing import Pool
import pysam
import pandas as pd
import os
from scipy.optimize import curve_fit
import argparse
from singlecellmultiomics.bamProcessing.bamFunctions import get_contigs_with_reads, get_r1_counts_per_cell, mate_iter
from singlecellmultiomics.bamProcessing.bamBinCounts import merge_overlapping_ranges
from collections import Counter, defaultdict
import numpy as np
import seaborn as sns
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 300
class DivCounter(Counter):
"""Divisable counter"""
def __truediv__(self,other):
result = Counter()
for k,v in self.items():
result[k] = v/other
return result
def find_nearest(array, values):
idxes = np.searchsorted(array, values, side="left")
r = []
for value, idx in zip(values, idxes):
if idx > 0 and (idx == len(array) or math.fabs(value - array[idx - 1]) < math.fabs(value - array[idx])):
r.append(array[idx - 1])
else:
r.append(array[idx])
return r
def calculate_distance(vector_target: np.array, vector_viewpoint: np.array, max_range: float):
# Calculate distance between viewpoint and target, skip locations with a nan (will not be returned in the result)
existing = ~(np.isnan(vector_viewpoint) & ~np.isnan(vector_target))
if existing.sum() == 0:
return []
dist = vector_viewpoint[existing] - vector_target[existing]
return dist[(dist > -max_range) * (dist < max_range)]
def dictionary_to_diff_vector(d,sample: str, vmin: float, vmax: float):
"""Convert a dict {contig:sample:position:obs} into sorted vector [ distance, distance, ..]"""
return np.array([
v for v in np.clip(
np.concatenate(
[np.diff(sorted(d[contig][sample])) for contig in d])
,vmin,vmax) if v>vmin and v<vmax])
def generate_prefix(prefix, prefix_with_region, contig, start, end ):
if prefix_with_region:
if prefix is None:
return (contig, start, end )
else:
return (prefix,contig, start, end )
else:
return prefix
def keep_contig(contig):
return not ('_' in contig or contig in ('chrY', 'chrM', 'chrEBV', 'MT') or contig.startswith('KN') or contig.startswith('KZ'))
def get_sc_cut_dictionary(bam_path: str, filter_function=None, strand_specific=False, prefix_with_bam=False, regions=None, prefix_with_region=False, n_threads=None, bulk=False, count_function=None):
"""
Generates cut distribution dictionary (contig)->sample->position->obs
"""
assert count_function is not None
if filter_function is None:
filter_function = read_counts_function
cut_sites = {}
if type(bam_path) is str:
bam_paths = [bam_path]
else:
bam_paths=bam_path
with Pool(n_threads) as workers:
for bam_path in bam_paths:
if prefix_with_bam:
prefix = bam_path.split('/')[-1].replace('.bam','')
else:
prefix=None
if regions is None:
regions = [(contig, None, None) for contig in get_contigs_with_reads(bam_path) if keep_contig(contig)]
print("Selected regions (max 10 shown)")
for r in regions[:10]:
print(f'\t{r}')
with pysam.AlignmentFile(bam_path) as alignments:
for contig,r in workers.imap_unordered(
count_function, (
(bam_path,
contig,
strand_specific,
filter_function,
generate_prefix(prefix,prefix_with_region,contig,start,end)
, start, end, n_threads, bulk)
for contig, start, end in regions )):
# Perform merge:
if not contig in cut_sites:
cut_sites[contig]=r
else:
for sample, positions in r.items():
cut_sites[contig][sample].update(positions)
print(f'\tFinished {contig}')
return cut_sites
def extract_indices(haystack, indices, fill):
return np.array([haystack[index] if index > 0 and index < len(haystack) else np.nan for index in indices])
def find_nearest_above(needles, haystack):
indices = np.searchsorted(haystack, needles, side="right")
return extract_indices(haystack, indices, np.nan)
def find_nearest_below(needles, haystack):
haystack_rev = -haystack
haystack_rev.sort()
indices = np.searchsorted(haystack_rev, -needles, side="right")
return np.abs(extract_indices(haystack_rev, indices, np.nan))
def get_stranded_pairwise_counts(sc_cut_dict_stranded, max_range=3000):
"""
Obtain how many observations exist of different types of pairs of molecules
Args:
sc_cut_dict_stranded(dict) : { contig: { sample: { Counter( position: obs ) .. }}}
max_range(int) : maximum distance to record
Returns:
distance_counter_fwd_above
distance_counter_fwd_below
distance_counter_rev_above
distance_counter_rev_below
"""
distance_counter_fwd_above = defaultdict(Counter)
distance_counter_fwd_below = defaultdict(Counter)
distance_counter_rev_above = defaultdict(Counter)
distance_counter_rev_below = defaultdict(Counter)
for contig in sc_cut_dict_stranded:
for sample in sc_cut_dict_stranded[contig].keys():
forward = np.array([pos for strand, pos in sc_cut_dict_stranded[contig][sample] if not strand])
reverse = np.array([pos for strand, pos in sc_cut_dict_stranded[contig][sample] if strand])
if len(forward) <= 1 or len(reverse) <= 1:
continue
forward.sort()
reverse.sort()
# for each position on the fwd strand find the closest fragment on the forward strand.
# [>>>>>>>> .....|
# <<<<<<<
nearest_fwd_above = find_nearest_above(forward, reverse)
distance_counter_fwd_above[sample] += Counter(calculate_distance(forward, nearest_fwd_above, max_range))
# >>>>>>>>
# <<<<<<<
nearest_fwd_below = find_nearest_below(forward, reverse)
distance_counter_fwd_below[sample] += Counter(calculate_distance(forward, nearest_fwd_below, max_range))
# >>>>>>> ..........|
# <<<<<<]
nearest_rev_above = find_nearest_above(reverse, forward)
distance_counter_rev_above[sample] += Counter(calculate_distance(reverse, nearest_rev_above, max_range))
# >>>>>>>>
# <<<<<<<
nearest_rev_below = find_nearest_below(reverse, forward)
distance_counter_rev_below[sample] += Counter(calculate_distance(reverse, nearest_rev_below, max_range))
return distance_counter_fwd_above, distance_counter_fwd_below, distance_counter_rev_above, distance_counter_rev_below
def read_counts_function(read):
if not read.is_read1 or read.is_duplicate or read.is_qcfail or read.mapping_quality==0:
return False
return True
def strict_read_counts_function(read):
if not read.is_read1 or \
read.is_duplicate or \
read.is_qcfail or \
read.mapping_quality<50 or \
'S' in read.cigarstring or \
'I' in read.cigarstring or \
not read.is_proper_pair or \
read.get_tag('NM')>1:
return False
return True
def loose_read_counts_function(read):
if read.is_duplicate or \
read.is_duplicate or \
read.mapping_quality<50 or \
'S' in read.cigarstring or \
'I' in read.cigarstring or \
not read.is_proper_pair or \
read.reference_start is None or read.reference_end is None:
return False
return True
def _get_ds_sc_cut_dictionary(args):
bam, contig, strand_specific, filter_function, prefix, start, end, n_threads, bulk = args
cut_positions = defaultdict(Counter)
with pysam.AlignmentFile(bam) as alignments:
for read in alignments.fetch(contig, start, end):
if not filter_function(read): #(dup qcfail etc)
continue
if bulk:
k=('bulk' if prefix is None else (prefix,'bulk'))
else:
k = read.get_tag('SM') if prefix is None else (prefix, read.get_tag('SM'))
cut_positions[k][
(read.is_reverse, read.get_tag('DS'))
if strand_specific else
read.get_tag('DS')
]+=1
return contig,cut_positions
def _get_sc_cut_dictionary(args):
bam, contig, strand_specific, filter_function, prefix, start, end, n_threads, bulk = args
cut_positions = defaultdict(Counter)
print_reasons = False
reasons = Counter()
with pysam.AlignmentFile(bam) as alignments:
for R1, R2 in mate_iter(alignments, contig=contig):
if R1 is None:
if print_reasons:
reasons['r1_none'] += 1
continue
if not filter_function(R1):
if print_reasons:
if R1.reference_start is None:
reasons['norefstart'] += 1
elif R1.reference_end is None:
reasons['norefend'] += 1
elif R1.is_duplicate is None:
reasons['duplicate'] += 1
elif R1.mapping_quality<50:
reasons['mq'] += 1
else:
reasons['filter'] += 1
continue
if bulk:
k = ('bulk' if prefix is None else (prefix, 'bulk'))
else:
k = R1.get_tag('SM') if prefix is None else (prefix, R1.get_tag('SM'))
if R1.is_reverse is None:
if print_reasons:
reasons['norev'] += 1
continue
if R1.is_reverse:
cut_location = R1.reference_end
else:
cut_location = R1.reference_start
cut_positions[k][
(R1.is_reverse, cut_location)
if strand_specific else
cut_location
] += 1
if print_reasons:
reasons['ok'] += 1
# for i,read in enumerate([R1,]):
# if read is None or not filter_function(read):
# continue
#
# if i==0:
# if read.is_reverse:
# cut_location = read.reference_end
# else:
# cut_location = read.reference_start
# if R1.is_reverse is not None:
# cut_positions[k][
# (R1.is_reverse, cut_location)
# if strand_specific else
# cut_location
# ] += 1
# else: # R2:
# if read.is_reverse:
# cut_location = read.reference_start
# else:
# cut_location = read.reference_end
# if R2.is_reverse is not None:
# cut_positions[k][
# (not R2.is_reverse, cut_location)
# if strand_specific else
# cut_location
# ] += 1
if print_reasons:
print(reasons)
return contig, cut_positions
def cuts_to_observation_vector(cell, cell_cuts, window_radius, n_bins, bin_size=1, take_n_samples=None,
log_distance=False, contig=None):
obs = np.zeros(n_bins, dtype=np.int64)
forward = np.array(list(cell_cuts.keys()))
if take_n_samples is not None:
forward = np.random.choice(forward, take_n_samples, replace=True)
forward.sort()
total_tests = 0
print(f"Performing {len(forward)} tests on contig {contig}")
for position in forward:
distance_to_all_points = forward - position
in_bounds = np.abs(distance_to_all_points[(distance_to_all_points >= -window_radius) & (
distance_to_all_points <= window_radius)])
# Exclude the point itself, which will be of course always associated to a distance 0
in_bounds = in_bounds[in_bounds > 0] - 1 # Offsets 1bp lower
total_tests += 1
# Add 1 to every distance we saw
if log_distance:
in_bounds = np.ceil(np.log2(in_bounds) * 100).astype(int)
else:
in_bounds = (np.floor(in_bounds / bin_size)).astype(int)
np.add.at(obs, in_bounds, 1)
return cell, obs, total_tests, contig
def _cuts_to_observation_vector(kwargs):
return cuts_to_observation_vector(**kwargs)
def analyse(bam_path,output_dir, create_plot=False, min_distance=20, max_distance=800, verbose=False, strand_specific=False, bulk=False, filter_function=None,count_function=None):
if verbose:
print('Obtaining molecules per cell .. ', end='\r')
cpr = get_r1_counts_per_cell(bam_path, get_r1_counts_per_cell='bulk' if bulk else None)
if verbose:
print('Molecules per cell: ')
for cell, obs in cpr.most_common():
print(f'\t{cell}\t{obs}')
if verbose:
print('Obtaining cuts per cell .. ', end='\r')
cut_sites = get_sc_cut_dictionary(bam_path, strand_specific=strand_specific, bulk=bulk, count_function=count_function,filter_function=filter_function)
all_counts = {}
for cell, total_molecules in cpr.most_common():
# Write from 0 to max_distance table
all_counts[cell] = DivCounter(dictionary_to_diff_vector(cut_sites,cell,0,max_distance))
cut_count_df = pd.DataFrame(all_counts).sort_index(axis=0).sort_index(axis=1).fillna(0)
cut_count_df.to_csv(f'{output_dir}/counts.csv')
if verbose:
print('Obtaining cuts per cell [ OK ]')
print('Fitting and plotting ..', end='\r')
if create_plot:
try:
cut_count_df.index.name='distance between cuts'
filtered_count_df = cut_count_df.loc[:, cut_count_df.sum()>100]
sns.clustermap((filtered_count_df / filtered_count_df.loc[20:].mean()).T,
cmap='viridis', vmax=3,
metric='correlation', col_cluster=False,
method='ward',figsize=(8,20))
plt.tight_layout()
plt.savefig(f'{output_dir}/heatmap.png')
#ax.figure.subplots_adjust(left=0.3) # change 0.3 to suit your needs.
except Exception as e:
print(e)
def function_to_fit(xdata, period, offset, amplitude, decay, mean ):
frequency = 1/period
return (amplitude*np.cos((2*np.pi*(frequency)*(xdata+offset) ))) * np.exp(-xdata*(1/decay)) + mean
# Bounds for fitting:
bounds=(
(150,300), # Frequency (b)
(-30,30), # offset (c)
(1,400), # amplitude
(100,1900), # decay
(1,99999), # mean
)
if create_plot:
sc_plot_dir = f'{output_dir}/sc_plots'
if not os.path.exists(sc_plot_dir):
os.makedirs(sc_plot_dir)
smooth_small_signals = {}
smooth_big_signals = {}
fit_params_per_cell = defaultdict(dict)
for cell, total_molecules in cpr.most_common():
try:
sc_counts = pd.DataFrame({
cell:DivCounter(
dictionary_to_diff_vector(cut_sites,cell,min_distance,max_distance))})
if create_plot:
fig, ax = plt.subplots(figsize=(10,3))
big_window = 35
smooth = sc_counts.rolling(window=big_window,center=True).mean()
smooth_big_signals[cell] = smooth[cell]
if create_plot:
ax.plot(smooth.index, smooth[cell],label=f'{big_window}bp sliding window')
limits = ax.get_ylim()
xdata = sc_counts[cell].index
ydata = sc_counts[cell].values
if len(ydata)==0:
continue
xdata = xdata[~np.isnan(ydata)]
ydata = ydata[~np.isnan(ydata)]
fit_params = curve_fit(function_to_fit, xdata, ydata,bounds=(np.array(bounds).T[0], np.array(bounds).T[1]))[0]
if create_plot:
plt.scatter(xdata,ydata, c='grey', s=1, label='Raw data')
period, offset, amplitude, decay,mean = fit_params
fit_params_per_cell['period'][cell] = period
fit_params_per_cell['offset'][cell] = offset
fit_params_per_cell['amplitude'][cell]= amplitude
fit_params_per_cell['decay'][cell] = decay
fit_params_per_cell['mean'][cell] = mean
if not create_plot:
continue
plt.plot(xdata,function_to_fit(xdata,*fit_params), c='r',
label=f'Fit : per:{period:.0f} ph:{offset:.0f} mean:{mean:.0f} dec:{decay:.2f}')
ax.axhline(mean,c='k')
ax.axvline(period-offset,c='b',lw=1)
ax.axvline(2*period-offset,c='b',lw=1)
ax.set_title(f'{cell},\n{total_molecules} molecules' )
ax.set_xlabel(f'distance to nearest cut (bp)' )
ax.set_ylabel(f'# cuts' )
ax.set_ylim( (limits[0]*0.9,limits[1]*1.1))
sns.despine()
ax.grid()
plt.legend()
plt.tight_layout()
plt.savefig(f'{sc_plot_dir}/{cell}.png')
plt.close()
# Plot residual with smoothed function
except RuntimeError as e:
print(f'Could not fit data for {cell}, ( {total_molecules} molecules )')
pass
if verbose:
print('Fitting and plotting [ OK ]')
print('Writing files ..', end='\r')
# Write tables to disk
tmp = {'molecules_total':cpr}
tmp.update(fit_params_per_cell)
df = pd.DataFrame(tmp)
df.to_csv(f'{output_dir}/fit.csv')
if verbose:
print('All done ')
if __name__ == '__main__':
import matplotlib
matplotlib.rcParams['figure.dpi'] = 160
matplotlib.use('Agg')
argparser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='Extract cut distribution from bam file')
argparser.add_argument('alignmentfiles', type=str, nargs='+')
argparser.add_argument('-o', type=str, required=True, help='Output folder')
argparser.add_argument('-regions', type=str, help='Restrict analysis to these regions (bed file)')
argparser.add_argument('-region_radius', type=int, default=0, help='Add extra radius to the regions')
argparser.add_argument('-min_region_len', type=int, default=1000)
argparser.add_argument('--legacy', action='store_true', help='Create legacy unstranded anaylsis plots and files')
argparser.add_argument('-max_distance', type=int,default=2000, help='Maximum distance in both plots and output tables')
argparser.add_argument('-t', type=int,default=None, help='Max processes')
argparser.add_argument('--bulk', action='store_true', help='All reads are derived from one sample')
argparser.add_argument('--nods', action='store_true', help='Reads do not have DS tags set, use loose setings and fragment ends')
args = argparser.parse_args()
if args.nods:
filter_func = loose_read_counts_function
count_func = _get_sc_cut_dictionary
else:
filter_func = strict_read_counts_function
count_func = _get_ds_sc_cut_dictionary
if args.regions is not None:
regions_per_contig = defaultdict(list)
with open(args.regions) as f:
rc = 0
for line in f:
if line.startswith('#'):
continue
parts = line.split()
if len(parts)<3:
continue
contig = parts[0]
start = int(parts[1]) - args.region_radius
end = int(parts[2]) + args.region_radius
regions_per_contig[contig].append( (start,end) )
rc+=1
print(f'{rc} regions read from bed file')
regions = []
for contig, contig_regions in regions_per_contig.items():
for start, end in merge_overlapping_ranges(contig_regions):
if end-start < args.min_region_len:
print('skipping region', contig, start, end)
continue
regions.append( (contig, start, end) )
print(f'{len(regions)} regions left after merging overlapping regions and filtering for small regions')
else:
regions=None
if not os.path.exists(args.o):
os.makedirs(args.o)
# 'Original' analysis
if args.legacy:
print('Performing legacy analysis')
if len(args.alignmentfiles)!=1:
raise ValueError('The legacy analysis only works on a single bam file')
analyse(args.alignmentfiles[0], args.o, create_plot=True, verbose=True,strand_specific=False,max_distance=args.max_distance, count_function=count_func)
# Stranded analysis:
sc_cut_dict_stranded = get_sc_cut_dictionary( args.alignmentfiles,strand_specific=True,filter_function=filter_func, regions=regions, n_threads=args.t, bulk=args.bulk, count_function=count_func)
distance_counter_fwd_above, distance_counter_fwd_below, distance_counter_rev_above, distance_counter_rev_below = get_stranded_pairwise_counts(sc_cut_dict_stranded)
# Write tables:
pd.DataFrame(distance_counter_fwd_above).sort_index(axis=1).sort_index(axis=0).to_csv(f'{args.o}/STRANDED_fwd_above.csv')
pd.DataFrame(distance_counter_fwd_below).sort_index(axis=1).sort_index(axis=0).to_csv(f'{args.o}/STRANDED_fwd_below.csv')
pd.DataFrame(distance_counter_rev_above).sort_index(axis=1).sort_index(axis=0).to_csv(f'{args.o}/STRANDED_rev_above.csv')
pd.DataFrame(distance_counter_rev_below).sort_index(axis=1).sort_index(axis=0).to_csv(f'{args.o}/STRANDED_rev_below.csv')
del sc_cut_dict_stranded
#################
# Unstranded density analysis:
print("Unstranded density analysis")
prefix_with_bam=False if len(args.alignmentfiles)==1 else True
sc_cut_dict = get_sc_cut_dictionary( args.alignmentfiles,strand_specific=False,filter_function=filter_func, prefix_with_bam=prefix_with_bam, regions=regions, n_threads=args.t, count_function=count_func, bulk=args.bulk)
print("Obtaining counts per cell 1/2")
cpr = get_r1_counts_per_cell(args.alignmentfiles, prefix_with_bam=prefix_with_bam, assoc_all_to_sample='bulk' if args.bulk else None)
print("Obtaining counts per cell 2/2")
counts = pd.Series(cpr).sort_values()
def get_commands(sc_cut_dict, one_contig=None):
for contig in sc_cut_dict: # sc_cut_dict:
if not keep_contig(contig):
continue
if one_contig is not None and contig != one_contig:
continue
for cell, cell_cuts in sc_cut_dict[contig].items():
yield cell, cell_cuts, contig
# Calculate distance from one position within a window
window_radius = args.max_distance
bin_size = 1
n_bins = int(np.ceil(window_radius / bin_size))
x_obs = np.linspace(1, window_radius , n_bins) # the associated distance per bin
# Single cell and one-sided
# This is a histogram of the amount of observed fragments at distances x:
obs = defaultdict(lambda: np.zeros(n_bins, dtype=np.int64))
total_tests = Counter() # cell -> tests
print("\tcuts_to_observation_vector calculation")
with Pool(args.t) as workers:
for cell, cell_obs, n_tests, contig in workers.imap_unordered(
_cuts_to_observation_vector,
(
{'cell_cuts': cell_cuts,
'window_radius': window_radius,
'cell': cell,
'log_distance': False,
'n_bins': n_bins,
'bin_size': bin_size,
'take_n_samples': None, # sample_target[contig]
'contig':contig
}
for cell, cell_cuts, contig in get_commands(sc_cut_dict)
)):
print(f'\tFinished {cell} [{contig}]')
obs[cell] += cell_obs
total_tests[cell] += n_tests
p_obs = pd.DataFrame(obs) / pd.Series(total_tests)
p_obs.index = x_obs
# Means per library:
print('Exporting results')
window = 35
p_obs.to_csv(f'{args.o}/strand_unspecific_density_raw.csv')
p_obs.to_pickle(f'{args.o}/strand_unspecific_density_raw.pickle.gz')
df = p_obs.rolling(center=True, window=window).mean()
df.to_csv(f'{args.o}/strand_unspecific_density_smooth.csv')
df.to_pickle(f'{args.o}/strand_unspecific_density_smooth.pickle.gz')
df = df[ [cell for cell in counts[counts > 1_000].index if cell in df.columns]]
print(df)
groups = pd.DataFrame({'library': {cell: cell.split('_')[0] if not prefix_with_bam else cell[0] for cell in df.columns}})
fig, ax = plt.subplots(figsize=(15, 8))
for library, cells in groups.groupby('library'):
df[cells.index].T.iloc[:, 1:].mean(0).iloc[20:].plot(label=f'{library}, {window}bp window', ax=ax)
sns.despine()
ax = plt.gca()
ax.grid(which='minor')
ax.grid()
plt.yscale('log')
# plt.xscale('log')
plt.xlabel('distance from cut (bp)')
plt.ylabel('P(cut)')
plt.tick_params(axis='y', which='minor')
# ax.yaxis.set_minor_formatter(FormatStrFormatter("%.1f"))
plt.legend()
plt.savefig(f'{args.o}/density_per_library.png')