[6bc38e]: / singlecellmultiomics / utils / plotting.py

Download this file

363 lines (284 with data), 13.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import matplotlib
import numpy as np
import pandas as pd
from singlecellmultiomics.utils import is_main_chromosome, get_contig_list_from_fasta
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import pysam
import seaborn as sns
from matplotlib.patches import Circle
from itertools import product
import collections
import string
import math
import matplotlib.patches as mpatches
# Define chromsome order:
def sort_chromosome_names(l):
chrom_values = []
for chrom in l:
chrom_value = None
chrom = chrom.replace('chr','').upper()
if chrom == 'X':
chrom_value = 99
elif chrom == 'Y':
chrom_value = 100
elif chrom == 'M' or chrom=='MT':
chrom_value = 101
elif chrom == 'EBV':
chrom_value = 102
elif chrom=='MISC_ALT_CONTIGS_SCMO':
chrom_value=999
else:
try:
chrom_value = int(chrom)
except Exception as e:
chrom_value = 999 + sum((ord(x) for x in chrom))
chrom_values.append(chrom_value)
indices = sorted(range(len(chrom_values)),key=lambda x:chrom_values[x])
return [l[idx] for idx in indices]
class GenomicPlot():
def __init__(self, ref_path, contigs=None, ignore_contigs=None):
"""
Initialise genomic plot
ref_path(str or pysam.FastaFile) : Path or handle to reference
"""
if contigs is None:
self.contigs = sort_chromosome_names(list(filter(lambda x: is_main_chromosome(x) and (ignore_contigs is None or x not in ignore_contigs) , get_contig_list_from_fasta(ref_path))))
else:
self.contigs = contigs
# Obtain the lengths:
if type(ref_path) is str:
with pysam.FastaFile(ref_path) as reference:
self.lengths = {r:l for r,l in zip(reference.references,reference.lengths) if r in self.contigs}
else:
self.lengths = {r:l for r,l in zip(ref_path.references,ref_path.lengths) if r in self.contigs}
self.total_bp = sum(self.lengths.values())
# Prune contigs with no length:
self.contigs = [contig for contig in self.contigs if contig in self.lengths]
def cn_heatmap(self, df:pd.DataFrame, cell_font_size=3, max_cn=4, method='ward', cmap='bwrm', yticklabels=True,
figsize=(15,20), xlabel = 'Contigs', ylabel='Cells', xtickfontsize=8, mask: pd.DataFrame=None, **kwargs ):
"""
Create a heatmap from a copy number matrix
df: triple indexed dataframe with as columns ('contig', start, end ), as rows cells/samples
cell_font_size (int): font size of the cell labels
max_cn (int) : dataframe will be clipped to this value. (Maximum copy number shown)
method (str) : clustering metric
cmap (str) : colormap used
figsize(tuple) : Size of the figure
xlabel (str) : Label for the x-axis, by default this is Contigs
ylabel (str) : Label for the x-axis, by default this is Cells
mask (pd.Dataframe) : boolean dataframe, values which are True will be masked
**kwargs : Arguments which will be passed to seaborn.clustermap
"""
if cmap=='bwrm':
cmap = plt.get_cmap('bwr').copy()
cmap.set_bad( (0.85,0.85,0.85) )
allelic_mode = len(df.columns[0])==4
if allelic_mode:
alleles = [allele for allele in df.columns.get_level_values(0).unique() if not pd.isna(allele)]
contigs_to_plot = [contig for contig in self.contigs if contig in set(df.columns.get_level_values(1))]
# Resample the dataframe, drop columns with no allele assigned:
df = df.loc[:,df.columns.isin(contigs_to_plot, level=1)][alleles].sort_index(axis=1)
def m(k):
allele,contig,start,end=k
return self.contigs.index(contig), alleles.index(allele),start
desired_order = sorted( list(df.loc[:,df.columns.isin(self.contigs, level=1)][alleles].sort_index(axis=1).columns), key=m)
df = df[desired_order]
else:
# Figure out what contigs are present in the dataframe:
contigs_to_plot = [contig for contig in self.contigs if contig in set(df.columns.get_level_values(0))]
df = df.sort_index(axis=1)[contigs_to_plot]
# When the mask is set, reindex it to match the order in the cn dataframe:
if mask is not None:
mask = mask.loc[df.index, df.columns]
try:
clmap = sns.clustermap(df,
col_cluster=False,method=method,
cmap=cmap, vmax=max_cn,
yticklabels=yticklabels, figsize=figsize, mask=mask, **kwargs)
ax_heatmap = clmap.ax_heatmap
except Exception as e:
print(e)
print('Falling back on heatmap without clustering')
fig, ax_heatmap = plt.subplots(figsize=figsize)
clmap = sns.heatmap(df,cmap=cmap,
vmax=max_cn, yticklabels=True, ax=ax_heatmap, mask=mask, **kwargs)
prev = None
xtick_pos = []
xtick_label = []
last_idx = 0
allele = None
for idx, key in enumerate(df.columns):
if allelic_mode:
(allele, contig, start, end) = key
else:
(contig, start, end) = key
# Clean up contig label:
contig = contig.replace('chr', '')
if allele is not None:
contig = f'{contig}:{allele}'
if prev is not None and prev != contig:
ax_heatmap.axvline(idx-0.5, c='k',lw=1.5, zorder=10)
xtick_pos.append( (idx+last_idx) / 2)
xtick_label.append(prev)
last_idx=idx
prev = contig
# Plot last tick..
xtick_pos.append( (idx+last_idx) / 2)
xtick_label.append(contig)
ax_heatmap.set_xticks(xtick_pos)
ax_heatmap.set_xticklabels(xtick_label,rotation=0, fontsize=xtickfontsize)
ax_heatmap.set_xlabel(xlabel,labelpad=20)
ax_heatmap.set_ylabel(ylabel,labelpad=20)
return clmap
def get_relative_widths(self):
return [self.lengths[contig]/self.total_bp for contig in self.contigs]
def reset_axis(self, contig):
ax = self[contig]
ax.clear()
ax.set_yticklabels([])
ax.set_yticks([])
ax.set_xticks([])
ax.set_xlabel(contig.replace('chr',''))
ax.set_xlim(0,self.lengths[contig])
def get_figure(self, figsize=(20,1)):
widths = self.get_relative_widths()
gs_kw = dict(width_ratios=widths)
figure = plt.figure(figsize =figsize)
figure.subplots_adjust(bottom=0.25, top=0.75)
self.gridspec = gridspec.GridSpec(1, len(widths), figure=figure, wspace=0.1, width_ratios=widths)
self.axis = {}
prev_ax = None
for i,contig in enumerate(self.contigs):
# i = i + 1 # grid spec indexes from 0
ax = plt.subplot(self.gridspec[i], sharey=prev_ax)
self.axis[contig] = ax
self.reset_axis(contig)
prev_ax=ax
sns.despine(left=True)
figure.canvas.draw()
return figure
def __getitem__(self, contig):
return self.axis[contig]
def plot_plate_layout(plate_layout:dict , welllabel2coord:dict , suptitle="Plate layout", cmap=None,class_colors=None, plot_plate_kwargs=None) -> dict:
"""
Plate layout is a dictionary of:
'D10': 'condition A'
'D11': 'condition B',
etc.
use "empty" for empty wells
welllabel2coord:
{'A0': (0, 0),
'A1': (0, 1),
'A2': (0, 2),
'A3': (0, 3), .. }
"""
states = list(set(plate_layout.values()).difference(set(['empty'])))
state_to_index = {state: i for i,state in enumerate(states)}
state_to_index['empty'] = np.nan
plate_indices = {welllabel2coord[well]:state_to_index[value] for well,value in plate_layout.items()}
plot_plate_kwargs = ({} if plot_plate_kwargs is None else plot_plate_kwargs)
if class_colors is not None:
plate_values = {welllabel2coord[well]:value for well,value in plate_layout.items()}
fig,ax,cbar = plot_plate(plate_values,class_colors=class_colors, **plot_plate_kwargs)
return {'fig':fig,'ax':ax,'cbar':cbar,'state_to_index':state_to_index, 'plate_indices':plate_indices}
if cmap is None:
cmap = plt.get_cmap('tab10').copy()
cmap.set_bad( (0.2,0.2,0.2) )
cmap.set_under(color='k')
fig,ax,cbar = plot_plate(plate_indices,vmax=cmap.N,cmap=cmap,log=False,vmin=0,usenorm=True,colorbarargs={'extend':'min'}, **plot_plate_kwargs)
cbar.set_yticks([0] + [i + 0.5 for i, state in enumerate(states)],['empty']+states)
cbar.set_ylim(0,len(states))
cbar.set_position([0.95, 0.2, 0.02,0.25])
cbar.set_title('Class')
plt.suptitle(suptitle,y=1)
return {'fig':fig,'ax':ax,'cbar':cbar,'state_to_index':state_to_index, 'plate_indices':plate_indices}
def plot_plate(coordinate_values: dict,
log: bool=True,
vmin: float=None,
vmax: float =None,
cmap_name:str ='viridis',
usenorm: bool=True, # Use normlizer (disable when using a custom colormap with discrete values
cmap=None,
colorbarargs={},
returncb=False,
class_colors: dict = None, # When supplied no colormap is used, instead this mapping is used and a legend created
yticklabelargs: dict = None, # Extra arguments passed to the yticklabels, for example { 'fontdict':{'fontsize':8} }
xticklabelargs: dict = None # Extra arguments passed to the xticklabels, for example { 'fontdict':{'fontsize':8} }
):
yticklabelargs = ( {} if yticklabelargs is None else yticklabelargs )
xticklabelargs = ( {} if xticklabelargs is None else xticklabelargs )
coordinate_values = {
kwgs[:2]:value
for kwgs, value in coordinate_values.items()
}
fig, ax = plt.subplots()
n_rows = 16
n_cols = 24
if class_colors is None:
if cmap is None:
cmap = matplotlib.cm.get_cmap(cmap_name)
well2index = collections.defaultdict(dict)
index2well = collections.defaultdict(dict)
rows = string.ascii_uppercase[:16]
columns = list(range(1, 25))
for ci in range(1, 385):
i = ci - 1
rowIndex = math.floor(i / len(columns))
row = rows[rowIndex]
column = columns[i % len(columns)]
well2index[384][(row, column)] = ci
index2well[384][ci] = (row, column)
###########
if class_colors is None:
if vmax is None:
vmax = np.percentile( list(coordinate_values.values()), 98)
if log:
vmax = np.power(10,np.ceil(np.log10(vmax)))
if usenorm:
if log:
norm = matplotlib.colors.LogNorm(vmin=1 if vmin is None else vmin, vmax=vmax)
else:
norm = matplotlib.colors.Normalize(vmin=0 if vmin is None else vmin, vmax=vmax)
for row,col in product(range(n_rows), range(n_cols)) :
#if (y,x) in coordinate_values:
# print(np.clip(coordinate_values.get((y,x))/vmax,0,1))
#print(None if (y,x) not in coordinate_values else cmap( np.clip(coordinate_values.get((y,x))/vmax,0,1)))
if class_colors is not None:
fc = class_colors[coordinate_values.get( (row,col), np.nan)]
elif usenorm is False:
fc = cmap(coordinate_values.get( (row,col), np.nan))
else:
fc = cmap(norm(coordinate_values.get( (row,col), np.nan)))
ax.add_patch( Circle( (col,n_rows-row-1),
radius=0.45,
fill= (True if (row,col) not in coordinate_values else True),
fc= fc))
ax.set_ylim(-1, n_rows)
ax.set_xlim(-1, n_cols)
ax.set_xticks(np.arange(n_cols))
ax.set_xticklabels(np.arange(1,n_cols+1), **xticklabelargs)
ax.set_yticks(np.arange(n_rows))
ax.set_yticklabels([string.ascii_uppercase[n_rows-i-1] for i in range(n_rows)], **yticklabelargs)
ax.xaxis.tick_top()
ax.grid()
ax.tick_params(axis='y', which='both',length=3, pad=6)
for label in ax.get_yticklabels():
label.set_horizontalalignment('center')
#norm = mpl.colors.Normalize(vmin=0, vmax=vmax)
if class_colors is not None:
patches = []
for class_name, color in class_colors.items():
patches.append( mpatches.Patch(color=color, label=class_name) )
cb = legend = ax.legend(handles=patches,loc="upper left", bbox_to_anchor=(1,1))
cax= None
else:
cax = fig.add_axes([0.95, 0.2, 0.03, 0.6])
cb = matplotlib.colorbar.ColorbarBase(cax, cmap=cmap,
norm=norm if usenorm else None,
orientation='vertical',**colorbarargs)
cb.outline.set_visible(False)
if returncb:
return fig, ax, cax, cb
else:
return fig, ax, cax