[4f4f20]: / singlecellmultiomics / bamProcessing / bamCopyNumber.py

Download this file

906 lines (699 with data), 35.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import matplotlib
import singlecellmultiomics
matplotlib.rcParams['figure.dpi'] = 160
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
from glob import glob
import seaborn as sns
import pysam
import numpy as np
import multiprocessing
from datetime import datetime
from singlecellmultiomics.utils.plotting import GenomicPlot
from singlecellmultiomics.bamProcessing.bamFunctions import verify_and_fix_bam
from singlecellmultiomics.bamProcessing.bamBinCounts import count_fragments_binned, generate_commands, gc_correct_cn_frame, obtain_counts
import os
import argparse
from colorama import Fore, Style
from scipy.cluster.hierarchy import leaves_list
from scipy.cluster.hierarchy import linkage,fcluster
import sklearn.metrics
import random
import collections
import seaborn as sns
import more_itertools
from singlecellmultiomics.utils.pandas import createRowColorDataFrame
from matplotlib.ticker import MaxNLocator
from matplotlib.backends.backend_pdf import PdfPages
from multiprocessing import Pool
from scipy.optimize import minimize
def square_integer_dist( args,v):
(amp,offset) = args
int_distance = np.sum( np.power( (v*amp + offset) - (v*amp + offset).round(),2) )
distance_from_median = np.power(np.median((v*amp + offset))-2,2)*30
return distance_from_median+int_distance
def minimize_square_int_dist(v):
return minimize(square_integer_dist,
x0=[1,0],
args=(v, ),
bounds=[
(0.7,1.3),
(-0.01,0.01)]
).x
def minimize_peak_to_integer(df):
#Calculate amplification factor such that the distance to integers is smallest
with Pool() as workers:
minimized = list(workers.imap(minimize_square_int_dist, (row for _,row in df.iterrows() )))
amps = np.array(minimized)[:,0]
offsets = np.array(minimized)[:,1]
return (df.T*amps + offsets).T
def variance_filter(copy_mat, final_segments, segmented_matrix, plot_path=None, vlim=0.025, min_cells_per_seg_call = 5):
d = copy_mat
variances = {}
for chrom, seg in final_segments:
if not (chrom,seg) in segmented_matrix:
continue
median_cn = d[chrom].iloc[:,seg[0]:seg[1]].median(1).round()
cn_obs = collections.Counter(median_cn).most_common()
if len(cn_obs)<2:
continue
most_common_cn = cn_obs[0][0]
second_common_cn = cn_obs[1][0]
if cn_obs[1][1]<min_cells_per_seg_call:
continue
variances[chrom,seg] = max( d[chrom].iloc[:,seg[0]:seg[1]].mean(1)[second_common_cn==median_cn].var(0), d[chrom].iloc[:,seg[0]:seg[1]].mean(1)[most_common_cn==median_cn].var(0)) #variance_selected_bins
vf = pd.DataFrame({'variance':variances})
variance_selected_bins = vf[ vf['variance']<=vlim ].index
if plot_path is not None:
fig, ax = plt.subplots(figsize=(20,4))
vf.plot.bar(ax=ax)
ax.axhline(vlim,c='red')
#vf['variance'].plot.hist()
#ax = plt.gca()
#ax.axvline(vlim,c='red')
plt.tight_layout()
plt.savefig(plot_path)
plt.close()
var_filtered_final_segments = []
for contig,(start, end) in final_segments:
k = contig,(start, end)
if k in variance_selected_bins:
var_filtered_final_segments.append(k)
return var_filtered_final_segments
def assign_clusters(copy_mat, final_segments,min_cells_per_cluster=3, MAXCP=4, min_segment_size = 5):
d = copy_mat
segmented_matrix_floating=[]
segmented_matrix = []
segmented_matrix_labels = []
for chrom, seg in final_segments:
segmented_matrix_floating.append(np.clip(d[chrom].iloc[:,seg[0]:seg[1]].median(1),0, MAXCP ))
segmented_matrix.append(np.clip(d[chrom].iloc[:,seg[0]:seg[1]].median(1).round(0),0, MAXCP ))
segmented_matrix_labels.append((chrom,seg))
segmented_matrix = pd.concat(segmented_matrix,1)
segmented_matrix.columns = segmented_matrix_labels
segmented_matrix_floating = pd.concat(segmented_matrix_floating,1)
segmented_matrix_floating.columns = segmented_matrix_labels
columns_with_info = [len(segmented_matrix[column].unique())>1 for column in segmented_matrix]
segmented_matrix = segmented_matrix.loc[:,columns_with_info]
segmented_matrix_labels = np.array(segmented_matrix_labels)[columns_with_info]
segmented_matrix.columns= pd.MultiIndex.from_tuples(segmented_matrix.columns)
cnv_clusters = collections.Counter()
cell_to_unfiltered_cnv = collections.defaultdict(list)
for cell,row in segmented_matrix.iterrows():
cnv_clusters[tuple(row)]+=1
cell_to_unfiltered_cnv[tuple(row)].append(cell)
keep_clusters = []
cell_order = []
cell_cluster_names = []
current_cluster_name = 1
median_profiles = []
print('= Cluster assignment = ')
total_dropped = 0
for ci,(cluster, obs) in enumerate( cnv_clusters.most_common() ):
print(f'\t{cluster}, obs: {obs}')
if obs>=min_cells_per_cluster:
keep_clusters.append(cluster)
cells_in_cluster = []
for cell in cell_to_unfiltered_cnv[cluster]:
cells_in_cluster.append(cell)
# Cluster the cells ..
cells_in_cluster = np.array(cells_in_cluster)
cells_in_cluster = cells_in_cluster[leaves_list(
linkage(d.loc[cells_in_cluster], method='ward',optimal_ordering=True)
)]
#print(obs, len(cells_in_cluster))
median_profiles.append( d.loc[cells_in_cluster].median(0) )
cell_order += list(cells_in_cluster)
cell_cluster_names += [current_cluster_name]*len(cells_in_cluster)
current_cluster_name+=1
else:
print(f'\tDropping cluster {ci}, it has {obs} cells')
total_dropped+=obs
#fig, ax = plt.subplots()
#sns.heatmap(d.loc[cells_in_cluster].sort_index(1)[chrom_order] ,ax=ax, vmax=MAXCP,cmap='bwr')
#plt.savefig(f'./cluster_{ci}.png')
#plt.close()
print(f'{current_cluster_name} clusters identified')
print(f'{segmented_matrix.shape[0]} cells assigned to a cluster, {total_dropped} cells lost')
segmented_matrix.columns.names=['contig','range']
segmented_matrix.index.name='sample'
return segmented_matrix, cell_cluster_names, median_profiles, cell_order, segmented_matrix_floating
def filter_segment_size(segment_bounds, min_segment_size):
final_segments = []
for chrom, bounds_set in segment_bounds.items():
bounds_list=sorted(list(bounds_set))
for seg in list( more_itertools.windowed(bounds_list,2) ):
if np.abs(np.diff(seg))[0] < min_segment_size:
continue
seg = (seg[0],seg[1]) # the range is exclusive
final_segments.append( (chrom,seg) )
return final_segments
def generate_intitial_clustering(copy_mat, plot_directory, MAXCP=4, chrom_order=None, cn_difference_threshold=0.7, hand_picked_thresholds={}, max_cluster_count=30, seed=42, threshold_offset = 0 ):
if plot_directory is not None and not os.path.exists(plot_directory):
os.makedirs(plot_directory)
if chrom_order is None:
chrom_order = list(set(copy_mat.columns.get_level_values(0)))
random.seed(seed)
segment_bounds = collections.defaultdict(set)
segment_calls = []
for chromosome in chrom_order:
d = copy_mat[chromosome].clip(0,MAXCP)
L = linkage(d, method='ward')
scores = []
if chromosome in hand_picked_thresholds:
target = hand_picked_thresholds[chromosome]
print(f'Setting threshold for {chromosome} to {target} clusters')
else:
target = 0
thresholds = list(range(1,max(max_cluster_count,target+1)))
cluster_count = []
max_value = None
max_threshold = None
max_clustering = None
clusterings = {}
for t in thresholds:
z = fcluster(L, t ,'maxclust')
clusterings[t] = z
cluster_count.append(len(set(z)))
try:
scores.append( sklearn.metrics.silhouette_score(d,z) )
except Exception as e:
scores.append(0)
pass
if chromosome in hand_picked_thresholds:
if t==hand_picked_thresholds[chromosome]:
max_value = scores[-1]
max_clustering = z
max_threshold = t
elif max_value is None or scores[-1]>max_value :
max_value = scores[-1]
max_clustering = z
max_threshold = t
print(f'Clustering {chromosome} into {max_threshold} initial clusters')
max_cluster = max( clusterings.keys() )
#if max_threshold+1 in clusterings:
# max_threshold+=1
max_threshold+=threshold_offset
max_threshold=min(max_threshold,max_cluster)
max_value = scores[max_threshold-1]
max_clustering = clusterings[max_threshold]
if plot_directory is not None:
try:
plt.plot(thresholds,scores)
plt.title(chromosome)
plt.gca().axvline(max_threshold,c='r')
plt.savefig(f'{plot_directory}/silhouette_score_{chromosome}.png')
plt.close()
except Exception as e:
print(e)
assignments = max_clustering
cdf = pd.DataFrame( [assignments], columns=d.index )
cdf, lut = createRowColorDataFrame(cdf.T)
assignments = max_clustering
delta_cn_hist= collections.Counter()
if plot_directory is not None:
sns.clustermap( d.sort_index(1),
col_cluster= False, row_cluster=True, method= 'ward', vmax=MAXCP, row_colors=cdf, figsize=(20,40))
plt.savefig(f'{plot_directory}/clustering_{chromosome}.png')
plt.close()
fig, axes = plt.subplots(len(set(assignments)),1,figsize=(8,1 + len(set(assignments))), sharex=True, sharey=True, squeeze=False)
else:
axes = [None]*len(set(assignments))
for ax_col,clust in zip(axes, sorted(list(set(assignments)))):
if plot_directory is not None:
ax = ax_col[0]
data = d[assignments==clust].median().sort_index(0)
p = 0.005
sample = data.values
L = segment( sample,p=p )
# Copy number per segment:
S = validate(sample, L,p=p)
if plot_directory is not None:
ax.set_ylim(0, MAXCP+0.5)
segments = list(more_itertools.windowed(S,2) )
bps = []
# @todo: this code has a bug
for breakpoint, delta_cn in zip(S[1:], np.diff(
[data.iloc[start:end].median() for start, end in segments] )):
delta_cn_hist[delta_cn] += 1
if abs(delta_cn)>cn_difference_threshold:
#egment_bounds[chromosome][data.index[min(breakpoint,len(data)-1)]]+=len(data)
bps.append(breakpoint)
bps_including_ends = [1]+bps+[len(data)-2]
called_segment_indices = list(more_itertools.windowed(bps_including_ends,2) )
for bp in bps_including_ends:
#if plot_directory is not None:
# ax.axvline( [(start+end)/2 for start, end in data.index.values][bp], c='r')
segment_bounds[chromosome].add(bp)
for (start, end) in called_segment_indices:
data_in_seg = data[start:end]
color = 'grey'
if data_in_seg.median()>2.5:
color='r'
if data_in_seg.median()<1.5:
color='b'
if plot_directory is not None:
ax.scatter(
[(start+end)/2 for start, end in data_in_seg.index.values], data_in_seg.values, s=4,c=color )
if plot_directory is not None:
ax.set_title(f'{chromosome}, cluster {clust}')
ax.set_ylabel('copy number')
sns.despine(ax=ax)
for cp in range(1,MAXCP+1):
ax.axhline(cp,c='k',lw=0.5)
if plot_directory is not None:
ax.set_xlabel('position')
plt.tight_layout()
plt.savefig(f'{plot_directory}/segments_{chromosome}.png',dpi=120)
plt.close()
return segment_bounds
def cbs_stat(x):
'''Given x, Compute the subinterval x[i0:i1] with the maximal segmentation statistic t.
Returns t, i0, i1'''
x0 = x - np.mean(x)
n = len(x0)
y = np.cumsum(x0)
e0, e1 = np.argmin(y), np.argmax(y)
i0, i1 = min(e0, e1), max(e0, e1)
s0, s1 = y[i0], y[i1]
return (s1-s0)**2*n/(i1-i0+1)/(n+1-i1+i0), i0, i1+1
def tstat(x, i):
'''Return the segmentation statistic t testing if i is a (one-sided) breakpoint in x'''
n = len(x)
s0 = np.mean(x[:i])
s1 = np.mean(x[i:])
return (n-i)*i/n*(s0-s1)**2
def cbs(x, shuffles=1000, p=.05):
'''Given x, find the interval x[i0:i1] with maximal segmentation statistic t. Test that statistic against
given (shuffles) number of random permutations with significance p. Return True/False, t, i0, i1; True if
interval is significant, false otherwise.'''
max_t, max_start, max_end = cbs_stat(x)
if max_end-max_start == len(x):
return False, max_t, max_start, max_end
if max_start < 5:
max_start = 0
if len(x)-max_end < 5:
max_end = len(x)
thresh_count = 0
alpha = shuffles*p
xt = x.copy()
for i in range(shuffles):
np.random.shuffle(xt)
threshold, s0, e0 = cbs_stat(xt)
if threshold >= max_t:
thresh_count += 1
if thresh_count > alpha:
return False, max_t, max_start, max_end
return True, max_t, max_start, max_end
def rsegment(x, start, end, L=[], shuffles=1000, p=.05):
'''Recursively segment the interval x[start:end] returning a list L of pairs (i,j) where each (i,j) is a significant segment.
'''
threshold, t, s, e = cbs(x[start:end], shuffles=shuffles, p=p)
if (not threshold) | (e-s < 5) | (e-s == end-start):
L.append((start, end))
else:
if s > 0:
rsegment(x, start, start+s, L)
if e-s > 0:
rsegment(x, start+s, start+e, L)
if start+e < end:
rsegment(x, start+e, end, L)
return L
def segment(x, shuffles=1000, p=.05):
'''Segment the array x, using significance test based on shuffles rearrangements and significance level p
'''
start = 0
end = len(x)
L = []
rsegment(x, start, end, L, shuffles=shuffles, p=p)
return L
def validate(x, L, shuffles=1000, p=.01):
S = [x[0] for x in L]+[len(x)]
SV = [0]
left = 0
for test, s in enumerate(S[1:-1]):
t = tstat(x[S[left]:S[test+2]], S[test+1]-S[left])
threshold = 0
thresh_count = 0
site = S[test+1]-S[left]
xt = x[S[left]:S[test+2]].copy()
flag = True
for k in range(shuffles):
np.random.shuffle(xt)
threshold = tstat(xt, site)
if threshold > t:
thresh_count += 1
if thresh_count >= p*shuffles:
flag = False
break
if flag:
SV.append(S[test+1])
left += 1
SV.append(S[-1])
return SV
def get_segment_calls(copy_series, p_value=0.01, shuffles=10000, plot=None):
calls = {}
for contig in set(copy_series.columns.get_level_values(0)):
calls[contig] = []
copy_vector = copy_series[contig].median().sort_index()
x = [ 0.5*(s+e) for s,e in copy_vector.index ]
if plot is not None:
plot.axis[contig].scatter(x, copy_vector.values, c='grey', s=1)
l = segment( copy_vector.values, p=p_value, shuffles=shuffles)
s_calls = validate(copy_vector.values, l, p=p_value, shuffles=shuffles)
if s_calls[-1]!=len(copy_vector.values):
s_calls.append(len(copy_vector.values))
segments = list(more_itertools.windowed(s_calls,2) )
prev_cn = None
for segidx, (start,end) in enumerate(segments):
y = copy_vector.values[start:end]
try:
cn = int(np.round(np.median(y)))
except ValueError:
cn = 0 if prev_cn is None else prev_cn
if prev_cn is not None and prev_cn==cn:
continue
calls[contig].append( (start, end) )
# Obtain the actual coordinates of the segment..
#print(y,)
x = []
for i, (s,e) in enumerate(copy_vector.index[start:end]):
x.append((s + e) * 0.5)
"""
if i==0:
x.append(s)
else:
if i==(end-start-1):
x.append( e )
else:
x.append( (s+e)*0.5 )
"""
if plot is not None and contig in plot.axis:
color = {0:'k',1:'b',2:'grey',3:'red',4:'orange',5:'cyan'}.get(cn,'cyan')
plot.axis[contig].scatter(x, y, c=color, s=2)
if prev_cn is not None and plot is not None and contig in plot.axis:
#plot.axis[contig].axvline(copy_vector.index[start][0],c='k', lw=1)
if False:
try:
plot.axis[contig].axvline(copy_vector.index[end][1],c='k', lw=1)
except IndexError:
plot.axis[contig].axvline(copy_vector.index[end-1][1],c='k', lw=1)
prev_cn=cn
#plot.axis[contig].axvline(copy_vector.index[end-1],c='k')
return calls
def bulk_trace(pdf_path, copy_mat, cell_cluster_names, cell_order,segmented_matrix_floating,segmented_matrix ):
with PdfPages(pdf_path,
metadata={'Creator': f'SingleCellMultiOmics {singlecellmultiomics.__version__}', 'Author': 'SCMO',
'Title': 'Traces for assigned clusters'}) as pdf:
for cluster in set(cell_cluster_names):
fig = h.get_figure()
cells_in_cluster = np.array(cell_order)[np.array(cell_cluster_names)==cluster]
get_segment_calls(copy_mat.loc[cells_in_cluster][chrom_order], plot=h, p_value=0.01, shuffles=10000)
plt.suptitle(f'Cluster {cluster}, {len(cells_in_cluster)} cells, {len(cells_in_cluster)*100/len(cell_cluster_names):.2f}% of total')
pdf.savefig(fig)
plt.close()
# Create histograms per segment
for segment in segmented_matrix:
fig, ax = plt.subplots(figsize=(10, 5))
ax.hist(segmented_matrix_floating[segment], bins=40)
sns.despine()
ax.set_xlabel('copy number')
ax.set_ylabel('# cells')
plt.title(f'segment {segment[0]}:{segment[1][0] * bin_size}-{segment[1][1] * bin_size}', pad=30)
ax.set_xlim(0, MAXCP + 0.5)
for boundary in np.arange(0.5, MAXCP, 1):
plt.axvline(boundary, c='k', lw=1)
# Write total cells in CN:
# ax.set_ylim(0,ax.get_ylim()[1]*1.1)
y = ax.get_ylim()[1]
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
for cn in range(0, MAXCP + 1):
n_cells = (segmented_matrix[segment] == cn).sum()
ax.text(cn + (0.25 if cn == 0 else 0), y, f'CN:{cn}\n{n_cells} cells', horizontalalignment='center')
ax.grid(axis='y', which='both')
pdf.savefig(fig)
plt.close()
if __name__ == '__main__':
argparser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="""Export and plot copy number profiles
""")
argparser.add_argument('bamfiles', metavar='bamfiles', type=str, nargs='+')
argparser.add_argument('-ref', help='path to reference fasta', type=str, required=True)
argparser.add_argument('-bin_size', default=500_000, type=int)
argparser.add_argument('-max_cp', default=5, type=int)
argparser.add_argument('-threads', default=16, type=int)
argparser.add_argument('-bins_per_job', default=5, type=int)
argparser.add_argument('-pct_clip', default=99.999, type=float)
argparser.add_argument('-min_mapping_qual', default=40, type=int)
argparser.add_argument('-molecule_threshold', default=5_000, type=int)
argparser.add_argument('-ignore_contigs', default=None, type=str, help='Comma separated contigs to ignore for the analysis')
argparser.add_argument('--ignore_mp',action='store_true',help='Ignore mp tag value')
argparser.add_argument('--ignore_qcfail',action='store_true',help='Ignore qcfail tag value')
argparser.add_argument('--allelic',action='store_true',help='Perform allele specific analysis (requires DA tag)')
argparser.add_argument('-rawmatplot', type=str, help='Path to raw matrix, plot is not made when this path is not supplied ')
argparser.add_argument('-gcmatplot', type=str, help='Path to gc corrected matrix, plot is not made when this path is not supplied ')
argparser.add_argument('-histplot', type=str, help='Path to histogram ')
argparser.add_argument('-rawmat', type=str)
argparser.add_argument('-countmat', type=str)
argparser.add_argument('-gcmat', type=str)
argparser.add_argument('-norm_method', default='median', type=str, help='Either mean or median')
cops = argparser.add_argument_group('Clustering options')
cops.add_argument('-clustering_output_folder', type=str)
cops.add_argument('-min_segment_size', default=5, type=int)
cops.add_argument('-min_cells_per_cluster', default=8, type=int)
cops.add_argument('-vlim', default=0.04, type=float, help= 'variance limit')
cops.add_argument('-cn_difference_threshold', default=0.7, type=float)
cops.add_argument('-n_clusters_for_contig', default=None, type=str,
help="""Use to manually set the amount of clusters present at a contig
when the algorithm is underclustering.
Format: chr1:10,chr3:7
, when not supplied the silhouette_score is used to determine the amount of clusters""")
args = argparser.parse_args()
alignments_paths = args.bamfiles
bin_size = args.bin_size
MAXCP = args.max_cp
pct_clip = args.pct_clip
bins_per_job = args.bins_per_job
min_mapping_qual = args.min_mapping_qual
threads = args.threads
molecule_threshold = args.molecule_threshold
histplot=args.histplot
rawmatplot=args.rawmatplot
gcmatplot=args.gcmatplot
rawmat=args.rawmat
gcmat=args.gcmat
ignore_contigs = None if args.ignore_contigs is None else args.ignore_contigs.split(',')
reference = pysam.FastaFile(args.ref)
h=GenomicPlot(reference, ignore_contigs=ignore_contigs)
contigs = GenomicPlot(reference).contigs
kwargs = {'ignore_mp':args.ignore_mp,'ignore_qcfail':args.ignore_qcfail}
print("Creating count matrix ... ")
# Check if the bam files are in good shape:
for path in alignments_paths:
verify_and_fix_bam(path)
if args.allelic:
key_tags=['DA']
else:
key_tags=None
commands = generate_commands(
alignments_paths,
bin_size=bin_size,key_tags=key_tags,
bins_per_job=bins_per_job,head=None,min_mq=min_mapping_qual,kwargs=kwargs )
counts = obtain_counts(commands,
reference=reference,
threads=threads,
live_update=False,
show_n_cells=None,
update_interval=None,show_progress=True )
print(f"Creating count matrix [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
if histplot is not None:
print("Creating molecule histogram ... ",end="")
df = pd.DataFrame(counts).T.fillna(0)
fig, ax = plt.subplots()
cell_sums = df.sum()
cell_sums.name = 'Frequency'
cell_sums.plot.hist(bins=50)
ax.set_xlabel('# molecules')
ax.set_xscale('log')
ax.axvline(molecule_threshold, c='r', label='Threshold')
plt.legend()
plt.savefig(histplot)
print(f"\rCreating molecule histogram [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
plt.close()
# Convert the count dictionary to a dataframe
df = pd.DataFrame(counts).T.fillna(0)
if df.shape[0]==0:
raise ValueError('Resulting count matrix is empty. Is this file correctly tagged? Try adding the --ignore_mp flag')
if args.countmat is not None:
print("Exporting count matrix ... ", end="")
if args.countmat.endswith('.pickle.gz'):
df.to_pickle(args.countmat)
else:
df.to_csv(args.countmat)
print(f"\rExporting count matrix [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
if args.allelic:
alleles = [allele for allele in df.index.get_level_values(0).unique() if not pd.isna(allele)]
print(f'Found alleles: {", ".join(alleles)}')
df = df.loc[alleles]
print("Filtering count matrix ... ", end="")
# remove cells were the median is zero
if args.norm_method=='median':
try:
shape_before_median_filter = df.shape
df = df.T[df.median()>0].T
shape_after_median_filter = df.shape
print(shape_before_median_filter,shape_after_median_filter )
# Remove rows with little counts
df = df.T[df.sum()>molecule_threshold].T
df = df / np.percentile(df,pct_clip,axis=0)
df = np.clip(0,MAXCP,(df / df.median())*(2 if not args.allelic else 1))
df = df.T
except Exception as e:
print(f"\rMedian normalisation [ {Fore.RED}FAIL{Style.RESET_ALL} ] ")
args.norm_method = 'mean'
if args.norm_method == 'mean':
shape_before_median_filter = df.shape
df = df.T[df.mean()>0].T
shape_after_median_filter = df.shape
# Remove rows with little counts
df = df.T[df.sum()>molecule_threshold].T
df = df / np.percentile(df,pct_clip,axis=0)
df = np.clip(0,MAXCP,(df / df.mean())* (2 if not args.allelic else 1))
df = df.T
if args.norm_method == 'spikein':
print(df)
df = (df.T/(df['J02459.1'].sum()) ).T
df = np.clip(0,MAXCP,df)
# Perform peak transfromation to ensure integer copy numbers with median of ~2 :
if args.norm_method=='median':
try:
df = minimize_peak_to_integer(df)
except Exception as e:
print("minimize_peak_to_integer, failed:")
print(e)
if df.shape[0]==0:
print(f"\rRaw count matrix [ {Fore.RED}FAIL{Style.RESET_ALL} ] ")
raise ValueError('Resulting count matrix is empty, review the filter settings')
else:
print(f"\rFiltering count matrix [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
print( f'{df.shape[0]} cells, and {df.shape[1]} bins remaining' )
del counts
if rawmat is not None:
print("Exporting raw count matrix ... ", end="")
if rawmat.endswith('.pickle.gz'):
df.to_pickle(rawmat)
else:
df.to_csv(rawmat)
print(f"\rExporting raw count matrix [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
if rawmatplot is not None:
print("Creating raw heatmap ...", end="")
h.cn_heatmap(df, figsize=(15*(2 if args.allelic else 1),15+(0.05)*df.shape[0]))
plt.savefig(rawmatplot)
print(f"\rCreating raw heatmap [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
plt.close('all')
if gcmatplot is not None or gcmat is not None or args.clustering_output_folder is not None:
print("Performing GC correction ...", end="")
corrected_cells = gc_correct_cn_frame(df, reference, MAXCP, threads, norm_method=args.norm_method)
print(f"\rPerforming GC correction [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
# Perform peak transform to ensure integer copy numbers with median of ~2 :
if args.norm_method=='median':
try:
corrected_cells = minimize_peak_to_integer(corrected_cells)
except Exception as e:
print("minimize_peak_to_integer, failed:")
print(e)
if gcmatplot is not None:
print("Creating heatmap ...", end="")
h.cn_heatmap(corrected_cells,figsize=(15*(2 if args.allelic else 1),15))
plt.savefig(gcmatplot)
plt.close('all')
print(f"\rCreating heatmap [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
if gcmat is not None:
print("Exporting corrected count matrix ... ")
if gcmat.endswith('.pickle.gz'):
corrected_cells.to_pickle(gcmat)
else:
corrected_cells.to_csv(gcmat)
print(f"\rExporting corrected count matrix [ {Fore.GREEN}OK{Style.RESET_ALL} ] ")
if args.clustering_output_folder is not None:
clustering_plot_folder = f'{args.clustering_output_folder}/plots'
if not os.path.exists( clustering_plot_folder ):
os.makedirs(clustering_plot_folder)
segmentation_plot_folder = f'{args.clustering_output_folder}/plots/initial_segmentation'
if not os.path.exists( segmentation_plot_folder ):
os.makedirs(segmentation_plot_folder)
copy_mat = corrected_cells
chrom_order = [c for c in h.contigs]
min_cells_per_cluster = args.min_cells_per_cluster
min_segment_size = args.min_segment_size # segment size in bins
hand_picked_thresholds = {}
print("Creating first rough clustering")
if args.n_clusters_for_contig is not None:
hand_picked_thresholds = {
contig_n.split(':')[0]:int(contig_n.split(':')[1])
for contig_n in args.n_clusters_for_contig.split(',')
}
for c in hand_picked_thresholds:
if c not in chrom_order:
print(f"The contig {c} of which a threshold of {hand_picked_thresholds[c]} was set, is not part of the clustering. Make sure the name of the contig is correct. For example, it could be that the supplied reference does not use a chr prefix. Pick from: {chrom_order[:30]} ..." )
segment_bounds = generate_intitial_clustering(copy_mat,
plot_directory=segmentation_plot_folder,
MAXCP=MAXCP,
chrom_order=chrom_order,
hand_picked_thresholds=hand_picked_thresholds,
cn_difference_threshold=args.cn_difference_threshold,
seed=42 )
# Filter for segment size
print("Filtering for segment size")
segments = filter_segment_size(segment_bounds, min_segment_size=min_segment_size )
segmented_matrix, cell_cluster_names, median_profiles,cell_order, segmented_matrix_floating = assign_clusters(copy_mat,
segments,
MAXCP=MAXCP,
min_cells_per_cluster=min_cells_per_cluster,
min_segment_size=min_segment_size)
bulk_trace(f'{clustering_plot_folder}/segments_wo_variance_filter.pdf', copy_mat, cell_cluster_names, cell_order,segmented_matrix_floating, segmented_matrix)
cell_annot_df = pd.DataFrame([cell_cluster_names, [cell.split('_')[0] for cell in cell_order]],
columns=cell_order).T
cell_annot_colors, lut = createRowColorDataFrame(cell_annot_df)
cell_annot_colors.columns=['cluster','library']
cell_annot_df.columns=['cluster','library']
h.cn_heatmap(copy_mat.sort_index(1)[chrom_order].loc[cell_order],
row_colors=cell_annot_colors,
figsize=(30,30), row_cluster=False)
plt.savefig(f'{clustering_plot_folder}/segment_based_clustering_wo_variance_filter.png',dpi=150)
cell_annot_df.to_csv(f'{args.clustering_output_folder}/cell_clusters_wo_variance_filter.csv')
cell_annot_df.to_pickle(f'{args.clustering_output_folder}/cell_clusters_wo_variance_filter.pickle.gz')
segmented_matrix.to_csv(f'{args.clustering_output_folder}/segmented_matrix_wo_variance_filter.csv')
segmented_matrix.to_pickle(f'{args.clustering_output_folder}/segmented_matrix_wo_variance_filter.pickle.gz')
# Variance filter
print("Variance filter")
var_filtered_final_segments = variance_filter(copy_mat, segments, segmented_matrix, f'{clustering_plot_folder}/segment_variance.png',vlim=args.vlim)
print("Creating final segmentation")
segmented_matrix_f, cell_cluster_names, median_profiles, cell_order, segmented_matrix_floating = assign_clusters(copy_mat,
var_filtered_final_segments,
min_cells_per_cluster=min_cells_per_cluster,
MAXCP=MAXCP, min_segment_size=min_segment_size)
# Create plot of clustering:
print("Creating plots and tables")
cell_annot_df = pd.DataFrame([cell_cluster_names, [cell.split('_')[0] for cell in cell_order]],
columns=cell_order)
cell_annot_df.to_csv(f'{args.clustering_output_folder}/cell_clusters.csv')
cell_annot_df.to_pickle(f'{args.clustering_output_folder}/cell_clusters.pickle.gz')
cell_annot_df, lut = createRowColorDataFrame(cell_annot_df.T)
cell_annot_df.columns=['cluster','library']
h.cn_heatmap(copy_mat.sort_index(1)[chrom_order].loc[cell_order],
row_colors=cell_annot_df,
figsize=(30,30), row_cluster=False)
plt.savefig(f'{clustering_plot_folder}/segment_based_clustering.png',dpi=150)
plt.close()
sns.clustermap( segmented_matrix_f.loc[cell_order], row_colors=cell_annot_df, row_cluster=False, col_cluster=False )
plt.savefig(f'{clustering_plot_folder}/segment_clustering.png',dpi=150)
plt.close()
segmented_matrix_f.to_csv(f'{args.clustering_output_folder}/segmented_matrix.csv')
segmented_matrix_f.to_pickle(f'{args.clustering_output_folder}/segmented_matrix.pickle.gz')
# Create bulk trace plot:
bulk_trace(f'{clustering_plot_folder}/segments.pdf', copy_mat, cell_cluster_names, cell_order,segmented_matrix_floating,segmented_matrix_f)