[45ad7e]: / singlecellmultiomics / utils / sequtils.py

Download this file

422 lines (315 with data), 13.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import math
from pysam import FastaFile, AlignmentFile
from singlecellmultiomics.utils.prefetch import Prefetcher
from collections import Counter
import numpy as np
from pysamiterators import CachedFasta
from array import array
import os
class Reference(Prefetcher):
""" This is a picklable wrapper to pass reference handles """
def __init__(self):
self.args = locals().copy()
del self.args['self']
def instance(self, arg_update):
if 'self' in self.args:
del self.args['self']
clone = Reference(**self.args)
return clone
# Todo: exit statements
def prefetch(self, contig, start, end):
return FastaFile(**self.args)
def invert_strand_f(s):
if s=='+':
return '-'
elif s=='-':
return '+'
return '.'
def get_contig_lengths_from_resource(resource ) -> dict:
"""
Extract contig lengts from the supplied resouce (Fasta file or Bam/Cram/Sam )
Returns:
lengths(dict)
"""
if type(resource) is AlignmentFile:
return dict(zip(resource.references, resource.lengths))
elif type(resource) is str:
est_type = get_file_type(resource)
if est_type in (AlignmentFile,FastaFile):
with est_type(resource) as f:
lens = dict(zip(f.references, f.lengths))
return lens
raise NotImplementedError('Unable to extract contig lengths from this resource')
def get_file_type(s: str):
"""Guess the file type of the input string, returns None when the file type can not be determined"""
if s.endswith('.bam') or s.endswith('.cram') or s.endswith('.sam'):
return AlignmentFile
if s.endswith('.fa') or s.endswith('.fasta') or s.endswith('.fa.gz') or s.endswith('.fasta.gz'):
return FastaFile
return None
def create_fasta_dict_file(refpath: str, skip_if_exists=True, target_path=None):
"""Create index dict file for the reference fasta at refpath
Args:
refpath : path to fasta file
skip_if_exists : do not generate the index if it exists
Returns:
dpath (str) : path to the dict index file
"""
dpath = target_path if target_path is not None else refpath.replace('.fa','').replace('.fasta','')+'.dict'
if os.path.exists(dpath):
return dpath
with FastaFile(refpath) as reference, open(dpath,'w') as o:
for ref, l in zip(reference.references, reference.lengths ):
o.write(f'{ref}\t{l}\n')
return dpath
def get_chromosome_number(chrom: str) -> int:
"""
Get chromosome number (index) of the supplied chromosome:
'1' -> 1, chr1 -> 1, returns -1 when not available, chrM -> -1
"""
try:
return int(chrom.replace('chr',''))
except Exception as e:
return -1
def is_autosome(chrom: str) -> bool:
""" Returns True when the chromsome is an autosomal chromsome,
not an alternative allele, mitochrondrial or sex chromosome
Args:
chrom(str) : chromosome name
Returns:
is_main(bool) : True when the chromsome is an autosome
"""
return is_main_chromosome(chrom) and get_chromosome_number(chrom)!=-1
def is_main_chromosome(chrom: str, exclude_mt=False) -> bool:
""" Returns True when the chromsome is a main chromsome,
not an alternative locus, scaffold, decoy or spike-in
Args:
chrom(str) : chromosome name
Returns:
is_main(bool) : True when the chromsome is a main chromsome
"""
if exclude_mt and chrom in ('chrM', 'MT'):
return False
if chrom.startswith('KN') or chrom.startswith('KZ') or chrom.startswith('JH') or chrom.startswith('GL') or chrom.startswith(
'KI') or chrom.startswith('Unmapped_') or '0000' in chrom or chrom.startswith('chrUn') or chrom.endswith('_random') or \
'ERCC' in chrom or chrom.endswith('_alt') or \
"HLA-" in chrom or chrom.startswith('Un_') or \
'decoy' in chrom or \
chrom.endswith('_PATCH') or chrom.startswith('HSCHR') or chrom.endswith('_NOVEL_TEST'):
return False
return True
def get_contig_list_from_fasta(fasta_path: str, with_length: bool=False) -> list:
"""Obtain list of contigs froma fasta file,
all alternative contigs are pooled into the string MISC_ALT_CONTIGS_SCMO
Args:
fasta_path (str or pysam.FastaFile) : Path or handle to fasta file
with_length(bool): return list of lengths
Returns:
contig_list (list ) : List of contigs + ['MISC_ALT_CONTIGS_SCMO'] if any alt contig is present in the fasta file
"""
contig_list = []
has_alt = False
if with_length:
lens = []
if type(fasta_path) is str:
fa = FastaFile(fasta_path)
elif type(fasta_path) is FastaFile:
fa = fasta_path
else:
raise TypeError('Supply pysam.FastaFile or str')
for reference, length in zip(fa.references, fa.lengths):
if is_main_chromosome(reference):
contig_list.append(reference)
if with_length:
lens.append(length)
else:
has_alt = True
# Close handle if we just opened one
if type(fasta_path) is str:
fa.close()
if has_alt:
contig_list.append('MISC_ALT_CONTIGS_SCMO')
if with_length:
lens.append(None)
if with_length:
return contig_list, lens
return contig_list
def phred_to_prob(phred):
"""Convert a phred score (ASCII) or integer to a numeric probability
Args:
phred (str/int) : score to convert
returns:
probability(float)
"""
try:
if isinstance(phred, int):
return math.pow(10, -(phred) / 10)
return math.pow(10, -(ord(phred) - 33) / 10)
except ValueError:
return 1
def hamming_distance(a, b):
return sum((i != j and i != 'N' and j != 'N' for i, j in zip(a, b)))
complement_translate = str.maketrans('ATCGNatcgn', 'TAGCNtagcn')
def reverse_complement(seq):
"""Obtain reverse complement of seq
returns:
reverse complement (str)
"""
return seq.translate(complement_translate)[::-1]
def complement(seq):
"""Obtain complement of seq
returns:
complement (str)
"""
return seq.translate(complement_translate)
def split_nth(seq, separator, n):
"""
Split sequence at the n-th occurence of separator
Args:
seq(str) : sequence to split
separator(str): separator to split on
n(int) : split at the n-th occurence
"""
pos = 0
for i in range(n):
pos = seq.index(separator, pos + 1)
return seq[:pos], seq[pos + 1:]
def create_MD_tag(reference_seq, query_seq):
"""Create MD tag
Args:
reference_seq (str) : reference sequence of alignment
query_seq (str) : query bases of alignment
Returns:
md_tag(str) : md description of the alignment
"""
no_change = 0
md = []
for ref_base, query_base in zip(reference_seq.upper(), query_seq):
if ref_base.upper() == query_base:
no_change += 1
else:
if no_change > 0:
md.append(str(no_change))
md.append(ref_base)
no_change = 0
if no_change > 0:
md.append(str(no_change))
return ''.join(md)
def prob_to_phred(prob: float):
"""
Convert probability of base call being correct into phred score
Values are clipped to stay within 0 to 60 phred range
Args:
prob (float): probability of base call being correct
Returns:
phred_score (byte)
"""
return np.rint(-10 * np.log10(np.clip(1-prob, 1-0.999999, 0.999999))).astype('B')
def get_context(contig: str, position: int, reference: FastaFile, ibase: str = None, k_rad: int = 1):
"""
Args:
contig: contig of the location to extract context
position: zero based position
reference: pysam.FastaFile handle or similar object which supports .fetch()
ibase: single base to inject into the middle of the context
k_rad: radius to extract
Returns:
context(str) : extracted context with length k_rad*2 + 1
"""
if ibase is not None:
ctx = reference.fetch(contig, position-k_rad, position+k_rad+1).upper()
return ctx[:k_rad]+ibase+ctx[1+k_rad:]
else:
return reference.fetch(contig, position-k_rad, position+k_rad+1).upper()
def base_probabilities_to_likelihood(probs: dict):
probs['N'] = [1-p for base, ps in probs.items() for p in ps if base != 'N' ]
return {base:np.product(v)/np.power(0.25, len(v)-1) for base,v in probs.items() }
def likelihood_to_prob(likelihoods):
total_likelihood = sum(likelihoods.values())
return {key: value / total_likelihood
for key, value in likelihoods.items()}
def phredscores_to_base_call(probs: dict):
"""
Perform base calling on a observation dictionary.
Returns N when there are multiple options with the same likelihood
Args:
probs: dictionary with confidence scores probs = {
'A':[0.95,0.99,0.9],
'T':[0.1],
}
Returns:
base(str) : Called base
phred(float) : probability of the call to be correct
"""
# Add N:
likelihood_per_base = base_probabilities_to_likelihood(probs)
total_likelihood = sum(likelihood_per_base.values())
base_probs = Counter({base:p/total_likelihood for base, p in likelihood_per_base.items() }).most_common()
# We cannot make a base call when there are no observations or when the most likely bases have the same prob
if len(base_probs) == 0 or (len(base_probs) >= 2 and base_probs[0][1] == base_probs[1][1]):
return 'N', 0
return (base_probs[0][0], base_probs[0][1])
def pick_best_base_call( *calls ) -> tuple:
""" Pick the best base-call from a list of base calls
Example:
>>> pick_best_base_call( ('A',32), ('C',22) ) )
('A', 32)
>>> pick_best_base_call( ('A',32), ('C',32) ) )
None
Args:
calls (generator) : generator/list containing tuples
Returns:
tuple (best_base, best_q) or ('N',0) when there is a tie
"""
# (q_base, quality, ...)
best_base, best_q = None, -1
tie = False
for call in calls:
if call is None:
continue
if call[1]>best_q:
best_base= call[0]
best_q=call[1]
tie=False
elif call[1]==best_q and call[0]!=best_base:
tie=True
if tie or best_base is None:
return ('N',0)
return best_base, best_q
def read_to_consensus_dict(read, start: int = None, end: int = None, only_include_refbase: str = None, skip_first_n_cycles:int = None, skip_last_n_cycles: int = None, min_phred_score: int = None):
"""
Obtain consensus calls for read, between start and end
"""
if read is None:
return dict()
return { (read.reference_name, refpos):
(read.query_sequence[qpos],
read.query_qualities[qpos],
refbase
)
for qpos, refpos, refbase in read.get_aligned_pairs(
matches_only=True,
with_seq=True)
if (start is None or refpos>=start) and \
(end is None or refpos<=end) and \
(min_phred_score is None or read.query_qualities[qpos]>=min_phred_score) and \
(skip_last_n_cycles is None or ( read.is_reverse and qpos>skip_last_n_cycles) or (not read.is_reverse and qpos<read.infer_query_length()-skip_last_n_cycles)) and \
(skip_first_n_cycles is None or ( not read.is_reverse and qpos>skip_first_n_cycles) or ( read.is_reverse and qpos<read.infer_query_length()-skip_first_n_cycles)) and \
(only_include_refbase is None or refbase.upper()==only_include_refbase)
}
def get_consensus_dictionaries(R1, R2, only_include_refbase=None, dove_safe=False, min_phred_score=None, skip_first_n_cycles_R1=None, skip_last_n_cycles_R1=None,skip_first_n_cycles_R2=None, skip_last_n_cycles_R2=None, dove_R2_distance=0, dove_R1_distance=0 ):
assert (R1 is None or R1.is_read1) and (R2 is None or R2.is_read2)
if dove_safe:
if R1 is None or R2 is None:
raise ValueError(
'Its not possible to determine a safe region when the alignment of R1 or R2 is not specified')
if R1.is_reverse and not R2.is_reverse:
start, end = R2.reference_start + dove_R2_distance, R1.reference_end - dove_R1_distance -1
elif not R1.is_reverse and R2.is_reverse:
start, end = R1.reference_start + dove_R1_distance, R2.reference_end - dove_R2_distance -1
else:
raise ValueError('This method only works for inwards facing reads')
else:
start, end = None, None
return read_to_consensus_dict(R1, start, end, only_include_refbase=only_include_refbase, skip_last_n_cycles=skip_last_n_cycles_R1, skip_first_n_cycles=skip_first_n_cycles_R1,min_phred_score=min_phred_score), \
read_to_consensus_dict(R2, start, end, only_include_refbase=only_include_refbase, skip_last_n_cycles=skip_last_n_cycles_R2, skip_first_n_cycles=skip_last_n_cycles_R2, min_phred_score=min_phred_score)