Diff of /tests/test_taps.py [000000] .. [2c420a]

Switch to unified view

a b/tests/test_taps.py
1
#!/usr/bin/env python3
2
# -*- coding: utf-8 -*-
3
import unittest
4
import pysam
5
import os
6
7
from singlecellmultiomics.molecule import TAPSNlaIIIMolecule, TAPS
8
from singlecellmultiomics.fragment import NlaIIIFragment
9
from singlecellmultiomics.utils import create_MD_tag
10
11
from singlecellmultiomics.utils import complement
12
13
14
class TestTAPs(unittest.TestCase):
15
16
    def test_all(self):
17
        temp_folder = 'data'
18
19
        enable_ref_write=True
20
21
22
        ref_path = f'{temp_folder}/ref.fa'
23
        alignments_path = f'{temp_folder}/alignments.bam'
24
25
        if not os.path.exists(temp_folder):
26
            os.makedirs(temp_folder)
27
        # Create reference bam file
28
29
        refseq = 'TTAATCATGAAACCGTGGAGGCAAATCGGAGTGTAAGGCTTGACTGGATTCCTACGTTGCGTAGGTTCATGGGGGG'
30
        if enable_ref_write:
31
            with open(ref_path, 'w') as f:
32
                f.write(f">chr1\n{refseq}\n>chr2\n{complement(refseq)}\n""")
33
34
            # This command needs to finish, which is not working properly during testing
35
            pysam.faidx(ref_path)
36
37
        # CATG at base 5
38
        # Create BAM file with NLA fragment:
39
40
        alignments_path_unsorted = f'{alignments_path}.unsorted.bam'
41
        with pysam.AlignmentFile(alignments_path_unsorted,'wb',reference_names=['chr1'],reference_lengths=[len(refseq)]) as bam:
42
43
44
            ### Nla III mate pair example, containing 2 CpGs and 1 call on the wrong strand
45
            read_A = pysam.AlignedSegment(bam.header)
46
            read_A.reference_name = 'chr1'
47
            read_A.reference_start = 5
48
            # Before last A is a bogus G>A conversion to test strandness:
49
            read_A.query_sequence = 'CATGAAACCGTGGAGGCAAATTGGAGTAT'
50
            read_A.cigarstring = f'{len(read_A.query_sequence)}M'
51
            read_A.qual = 'A'*len(read_A.query_sequence)
52
            read_A.mapping_quality = 60
53
            read_A.query_name = 'EX1_GA_CONV_2x_CpG_TAPS'
54
            read_A.set_tag('SM', 'Cell_A')
55
            read_A.is_read1 = True
56
            read_A.is_read2 = False
57
            read_A.set_tag('lh','TG')
58
            # Set substitution tag:
59
            read_A.set_tag('MD',
60
                           create_MD_tag(
61
                                   refseq[read_A.reference_start:read_A.reference_end], read_A.query_sequence))
62
            read_A.is_paired = True
63
            read_A.is_proper_pair = True
64
65
66
            # Create a second read which is a mate of the previous
67
            read_B = pysam.AlignedSegment(bam.header)
68
            read_B.reference_name = 'chr1'
69
            read_B.reference_start = 25
70
            read_B.query_sequence = refseq[25:60].replace('TGT','TAT').replace('CG', 'TG')
71
            read_B.cigarstring = f'{len(read_B.query_sequence)}M'
72
            read_B.qual = 'A'*len(read_B.query_sequence)
73
            read_B.mapping_quality = 60
74
            read_B.is_read2 = True
75
            read_B.is_read1 = False
76
            read_B.is_reverse = True
77
            read_B.query_name = 'EX1_GA_CONV_2x_CpG_TAPS'
78
            read_B.set_tag('SM', 'Cell_A')
79
            read_B.set_tag('lh','TG')
80
            read_B.set_tag('MD',
81
                       create_MD_tag(refseq[read_B.reference_start:read_B.reference_end],
82
                                     read_B.query_sequence,
83
                               ))
84
            read_B.is_paired = True
85
            read_B.is_proper_pair = True
86
87
            read_A.next_reference_id = read_B.reference_id
88
            read_A.next_reference_start = read_B.reference_start
89
            read_B.next_reference_id = read_A.reference_id
90
            read_B.next_reference_start = read_A.reference_start
91
92
            read_A.mate_is_reverse = read_B.is_reverse
93
            read_B.mate_is_reverse = read_A.is_reverse
94
95
            bam.write(read_A)
96
            bam.write(read_B)
97
98
            ### Nla III mate pair example, dove tailed over random primer
99
            # , containing 1 CpGs and one 1 call in the dove tail which should not be called
100
            read_C = pysam.AlignedSegment(bam.header)
101
            read_C.reference_name = 'chr1'
102
            read_C.reference_start = 5
103
            read_C.query_sequence = 'CATGAAACCGTGGAGGC'.replace('ACC','ATC').replace('AGGC','CGGT')
104
            read_C.cigarstring = f'{len(read_C.query_sequence)}M'
105
            read_C.qual = 'A'*len(read_C.query_sequence)
106
            read_C.mapping_quality = 60
107
            read_C.query_name = 'EX2_GA_DOVE'
108
            read_C.set_tag('SM', 'Cell_A')
109
            read_C.is_read1 = True
110
            read_C.set_tag('lh','TG')
111
            # Set substitution tag:
112
            read_C.set_tag('MD',
113
                           create_MD_tag(
114
                                   refseq[read_C.reference_start:read_C.reference_end],
115
                               read_C.query_sequence))
116
117
            read_C.is_paired = True
118
            read_C.is_proper_pair = True
119
120
121
            # Create a second read which is a mate of the previous
122
            read_D = pysam.AlignedSegment(bam.header)
123
            read_D.reference_name = 'chr1'
124
            read_D.reference_start = 10
125
            read_D.query_sequence = refseq[10:15].replace('ACC','GTC')
126
            read_D.cigarstring = f'{len(read_D.query_sequence)}M'
127
            read_D.qual = 'A'*len(read_D.query_sequence)
128
            read_D.mapping_quality = 60
129
            read_D.is_read2 = True
130
            read_D.is_read1 = False
131
            read_D.is_reverse = True
132
            read_D.query_name = 'EX2_GA_DOVE'
133
            read_D.set_tag('SM', 'Cell_A')
134
            read_D.set_tag('lh','TG')
135
            read_D.set_tag('MD',
136
                       create_MD_tag(refseq[read_D.reference_start:read_D.reference_end],
137
                                     read_D.query_sequence,
138
                               ))
139
            read_D.is_paired = True
140
            read_D.is_proper_pair = True
141
142
            read_C.next_reference_id = read_D.reference_id
143
            read_C.next_reference_start = read_D.reference_start
144
            read_D.next_reference_id = read_C.reference_id
145
            read_D.next_reference_start = read_C.reference_start
146
147
            read_C.mate_is_reverse = read_D.is_reverse
148
            read_D.mate_is_reverse = read_C.is_reverse
149
150
            bam.write(read_C)
151
            bam.write(read_D)
152
153
            ########################################
154
            # Reverse dovetailed (2 way) alignment #
155
            ########################################
156
157
            read_E = pysam.AlignedSegment(bam.header)
158
            read_E.reference_name = 'chr1'
159
            read_E.query_sequence = refseq[2:71].replace('CATGAA','CATAAA').replace('CGG','CAG')
160
            read_E.reference_start = 71 - len(read_E.query_sequence)
161
            read_E.cigarstring = f'{len(read_E.query_sequence)}M'
162
            read_E.qual = 'A'*len(read_E.query_sequence)
163
            read_E.mapping_quality = 60
164
            read_E.query_name = 'EX2_GA_2xDOVE_rev'
165
            read_E.set_tag('SM', 'Cell_A')
166
            read_E.is_read2 = False
167
            read_E.is_read1 = True
168
            read_E.set_tag('lh','TG')
169
            read_E.is_reverse = True
170
            # Set substitution tag:
171
            read_E.set_tag('MD',
172
                           create_MD_tag(
173
                                   refseq[read_E.reference_start:read_E.reference_end],
174
                               read_E.query_sequence))
175
            read_E.set_tag('ri','read_E')
176
            read_E.is_paired = True
177
            read_E.is_proper_pair = True
178
179
180
            # Create a second read which is a mate of the previous
181
            read_F = pysam.AlignedSegment(bam.header)
182
            read_F.reference_name = 'chr1'
183
            read_F.reference_start = 10
184
            read_F.query_sequence = refseq[10:74].replace('CGG','CAG').replace('GGGG','GAGG')
185
            read_F.cigarstring = f'{len(read_F.query_sequence)}M'
186
            read_F.qual = 'A'*len(read_F.query_sequence)
187
            read_F.mapping_quality = 60
188
            read_F.is_read1 = False
189
            read_F.is_read2 = True
190
            read_F.is_reverse = False
191
            read_F.query_name = 'EX2_GA_2xDOVE_rev'
192
            read_F.set_tag('ri','read_F')
193
            read_F.set_tag('SM', 'Cell_A')
194
            read_F.set_tag('lh','TG')
195
            read_F.set_tag('MD',
196
                       create_MD_tag(refseq[read_F.reference_start:read_F.reference_end],
197
                                     read_F.query_sequence,
198
                               ))
199
            read_F.is_paired = True
200
            read_F.is_proper_pair = True
201
202
203
            read_F.mate_is_reverse = read_E.is_reverse
204
            read_E.mate_is_reverse = read_F.is_reverse
205
206
            read_E.next_reference_id = read_F.reference_id
207
            read_E.next_reference_start = read_F.reference_start
208
            read_F.next_reference_id = read_E.reference_id
209
            read_F.next_reference_start = read_E.reference_start
210
211
            bam.write(read_E)
212
            bam.write(read_F)
213
214
215
        pysam.sort(alignments_path_unsorted, '-o', alignments_path)
216
        pysam.index(alignments_path)
217
218
        taps = TAPS()
219
        with pysam.FastaFile(ref_path) as reference:
220
221
            self.assertEqual(reference.fetch('chr1', 26, 26 + 3),'CGG')
222
            molecule = TAPSNlaIIIMolecule(
223
                NlaIIIFragment([read_A, read_B]),
224
                reference=reference,
225
                taps=taps,
226
                taps_strand='F'
227
            )
228
            molecule.__finalise__()
229
230
            calls = molecule.methylation_call_dict
231
            print(calls)
232
            print(calls[('chr1', 54)])
233
            self.assertEqual( calls['chr1', 54]['context'], 'Z')
234
            self.assertEqual( calls['chr1', 26]['context'], 'Z')
235
            self.assertNotIn(  ('chr1', 26 + 6), calls)
236
237
238
            molecule = TAPSNlaIIIMolecule(
239
                NlaIIIFragment([read_E, read_F]),
240
                reference =reference,
241
                taps = taps,
242
                taps_strand='F'
243
            )
244
            molecule.__finalise__()
245
246
            # Test dove-tail detection:
247
            self.assertNotIn( ('chr1', 71) , molecule.methylation_call_dict)
248
            self.assertNotIn(('chr1', 8) , molecule.methylation_call_dict)
249
250
251
252
            molecule = TAPSNlaIIIMolecule(
253
                NlaIIIFragment([read_C, read_D]),
254
                reference=reference,
255
                taps=taps,
256
                taps_strand='F'
257
            )
258
            molecule.__finalise__()
259
260
            calls = molecule.methylation_call_dict
261
262
            self.assertEqual(calls['chr1', 12]['context'], 'X')
263
264
            # Check that dove tail is not included:
265
            self.assertNotIn(('chr1', 21), calls)
266
267
268
269
if __name__ == '__main__':
270
    unittest.main()