import math
from pysam import FastaFile, AlignmentFile
from singlecellmultiomics.utils.prefetch import Prefetcher
from collections import Counter
import numpy as np
from pysamiterators import CachedFasta
from array import array
import os
class Reference(Prefetcher):
""" This is a picklable wrapper to pass reference handles """
def __init__(self):
self.args = locals().copy()
del self.args['self']
def instance(self, arg_update):
if 'self' in self.args:
del self.args['self']
clone = Reference(**self.args)
return clone
# Todo: exit statements
def prefetch(self, contig, start, end):
return FastaFile(**self.args)
def invert_strand_f(s):
if s=='+':
return '-'
elif s=='-':
return '+'
return '.'
def get_contig_lengths_from_resource(resource ) -> dict:
"""
Extract contig lengts from the supplied resouce (Fasta file or Bam/Cram/Sam )
Returns:
lengths(dict)
"""
if type(resource) is AlignmentFile:
return dict(zip(resource.references, resource.lengths))
elif type(resource) is str:
est_type = get_file_type(resource)
if est_type in (AlignmentFile,FastaFile):
with est_type(resource) as f:
lens = dict(zip(f.references, f.lengths))
return lens
raise NotImplementedError('Unable to extract contig lengths from this resource')
def get_file_type(s: str):
"""Guess the file type of the input string, returns None when the file type can not be determined"""
if s.endswith('.bam') or s.endswith('.cram') or s.endswith('.sam'):
return AlignmentFile
if s.endswith('.fa') or s.endswith('.fasta') or s.endswith('.fa.gz') or s.endswith('.fasta.gz'):
return FastaFile
return None
def create_fasta_dict_file(refpath: str, skip_if_exists=True, target_path=None):
"""Create index dict file for the reference fasta at refpath
Args:
refpath : path to fasta file
skip_if_exists : do not generate the index if it exists
Returns:
dpath (str) : path to the dict index file
"""
dpath = target_path if target_path is not None else refpath.replace('.fa','').replace('.fasta','')+'.dict'
if os.path.exists(dpath):
return dpath
with FastaFile(refpath) as reference, open(dpath,'w') as o:
for ref, l in zip(reference.references, reference.lengths ):
o.write(f'{ref}\t{l}\n')
return dpath
def get_chromosome_number(chrom: str) -> int:
"""
Get chromosome number (index) of the supplied chromosome:
'1' -> 1, chr1 -> 1, returns -1 when not available, chrM -> -1
"""
try:
return int(chrom.replace('chr',''))
except Exception as e:
return -1
def is_autosome(chrom: str) -> bool:
""" Returns True when the chromsome is an autosomal chromsome,
not an alternative allele, mitochrondrial or sex chromosome
Args:
chrom(str) : chromosome name
Returns:
is_main(bool) : True when the chromsome is an autosome
"""
return is_main_chromosome(chrom) and get_chromosome_number(chrom)!=-1
def is_main_chromosome(chrom: str, exclude_mt=False) -> bool:
""" Returns True when the chromsome is a main chromsome,
not an alternative locus, scaffold, decoy or spike-in
Args:
chrom(str) : chromosome name
Returns:
is_main(bool) : True when the chromsome is a main chromsome
"""
if exclude_mt and chrom in ('chrM', 'MT'):
return False
if chrom.startswith('KN') or chrom.startswith('KZ') or chrom.startswith('JH') or chrom.startswith('GL') or chrom.startswith(
'KI') or chrom.startswith('Unmapped_') or '0000' in chrom or chrom.startswith('chrUn') or chrom.endswith('_random') or \
'ERCC' in chrom or chrom.endswith('_alt') or \
"HLA-" in chrom or chrom.startswith('Un_') or \
'decoy' in chrom or \
chrom.endswith('_PATCH') or chrom.startswith('HSCHR') or chrom.endswith('_NOVEL_TEST'):
return False
return True
def get_contig_list_from_fasta(fasta_path: str, with_length: bool=False) -> list:
"""Obtain list of contigs froma fasta file,
all alternative contigs are pooled into the string MISC_ALT_CONTIGS_SCMO
Args:
fasta_path (str or pysam.FastaFile) : Path or handle to fasta file
with_length(bool): return list of lengths
Returns:
contig_list (list ) : List of contigs + ['MISC_ALT_CONTIGS_SCMO'] if any alt contig is present in the fasta file
"""
contig_list = []
has_alt = False
if with_length:
lens = []
if type(fasta_path) is str:
fa = FastaFile(fasta_path)
elif type(fasta_path) is FastaFile:
fa = fasta_path
else:
raise TypeError('Supply pysam.FastaFile or str')
for reference, length in zip(fa.references, fa.lengths):
if is_main_chromosome(reference):
contig_list.append(reference)
if with_length:
lens.append(length)
else:
has_alt = True
# Close handle if we just opened one
if type(fasta_path) is str:
fa.close()
if has_alt:
contig_list.append('MISC_ALT_CONTIGS_SCMO')
if with_length:
lens.append(None)
if with_length:
return contig_list, lens
return contig_list
def phred_to_prob(phred):
"""Convert a phred score (ASCII) or integer to a numeric probability
Args:
phred (str/int) : score to convert
returns:
probability(float)
"""
try:
if isinstance(phred, int):
return math.pow(10, -(phred) / 10)
return math.pow(10, -(ord(phred) - 33) / 10)
except ValueError:
return 1
def hamming_distance(a, b):
return sum((i != j and i != 'N' and j != 'N' for i, j in zip(a, b)))
complement_translate = str.maketrans('ATCGNatcgn', 'TAGCNtagcn')
def reverse_complement(seq):
"""Obtain reverse complement of seq
returns:
reverse complement (str)
"""
return seq.translate(complement_translate)[::-1]
def complement(seq):
"""Obtain complement of seq
returns:
complement (str)
"""
return seq.translate(complement_translate)
def split_nth(seq, separator, n):
"""
Split sequence at the n-th occurence of separator
Args:
seq(str) : sequence to split
separator(str): separator to split on
n(int) : split at the n-th occurence
"""
pos = 0
for i in range(n):
pos = seq.index(separator, pos + 1)
return seq[:pos], seq[pos + 1:]
def create_MD_tag(reference_seq, query_seq):
"""Create MD tag
Args:
reference_seq (str) : reference sequence of alignment
query_seq (str) : query bases of alignment
Returns:
md_tag(str) : md description of the alignment
"""
no_change = 0
md = []
for ref_base, query_base in zip(reference_seq.upper(), query_seq):
if ref_base.upper() == query_base:
no_change += 1
else:
if no_change > 0:
md.append(str(no_change))
md.append(ref_base)
no_change = 0
if no_change > 0:
md.append(str(no_change))
return ''.join(md)
def prob_to_phred(prob: float):
"""
Convert probability of base call being correct into phred score
Values are clipped to stay within 0 to 60 phred range
Args:
prob (float): probability of base call being correct
Returns:
phred_score (byte)
"""
return np.rint(-10 * np.log10(np.clip(1-prob, 1-0.999999, 0.999999))).astype('B')
def get_context(contig: str, position: int, reference: FastaFile, ibase: str = None, k_rad: int = 1):
"""
Args:
contig: contig of the location to extract context
position: zero based position
reference: pysam.FastaFile handle or similar object which supports .fetch()
ibase: single base to inject into the middle of the context
k_rad: radius to extract
Returns:
context(str) : extracted context with length k_rad*2 + 1
"""
if ibase is not None:
ctx = reference.fetch(contig, position-k_rad, position+k_rad+1).upper()
return ctx[:k_rad]+ibase+ctx[1+k_rad:]
else:
return reference.fetch(contig, position-k_rad, position+k_rad+1).upper()
def base_probabilities_to_likelihood(probs: dict):
probs['N'] = [1-p for base, ps in probs.items() for p in ps if base != 'N' ]
return {base:np.product(v)/np.power(0.25, len(v)-1) for base,v in probs.items() }
def likelihood_to_prob(likelihoods):
total_likelihood = sum(likelihoods.values())
return {key: value / total_likelihood
for key, value in likelihoods.items()}
def phredscores_to_base_call(probs: dict):
"""
Perform base calling on a observation dictionary.
Returns N when there are multiple options with the same likelihood
Args:
probs: dictionary with confidence scores probs = {
'A':[0.95,0.99,0.9],
'T':[0.1],
}
Returns:
base(str) : Called base
phred(float) : probability of the call to be correct
"""
# Add N:
likelihood_per_base = base_probabilities_to_likelihood(probs)
total_likelihood = sum(likelihood_per_base.values())
base_probs = Counter({base:p/total_likelihood for base, p in likelihood_per_base.items() }).most_common()
# We cannot make a base call when there are no observations or when the most likely bases have the same prob
if len(base_probs) == 0 or (len(base_probs) >= 2 and base_probs[0][1] == base_probs[1][1]):
return 'N', 0
return (base_probs[0][0], base_probs[0][1])
def pick_best_base_call( *calls ) -> tuple:
""" Pick the best base-call from a list of base calls
Example:
>>> pick_best_base_call( ('A',32), ('C',22) ) )
('A', 32)
>>> pick_best_base_call( ('A',32), ('C',32) ) )
None
Args:
calls (generator) : generator/list containing tuples
Returns:
tuple (best_base, best_q) or ('N',0) when there is a tie
"""
# (q_base, quality, ...)
best_base, best_q = None, -1
tie = False
for call in calls:
if call is None:
continue
if call[1]>best_q:
best_base= call[0]
best_q=call[1]
tie=False
elif call[1]==best_q and call[0]!=best_base:
tie=True
if tie or best_base is None:
return ('N',0)
return best_base, best_q
def read_to_consensus_dict(read, start: int = None, end: int = None, only_include_refbase: str = None, skip_first_n_cycles:int = None, skip_last_n_cycles: int = None, min_phred_score: int = None):
"""
Obtain consensus calls for read, between start and end
"""
if read is None:
return dict()
return { (read.reference_name, refpos):
(read.query_sequence[qpos],
read.query_qualities[qpos],
refbase
)
for qpos, refpos, refbase in read.get_aligned_pairs(
matches_only=True,
with_seq=True)
if (start is None or refpos>=start) and \
(end is None or refpos<=end) and \
(min_phred_score is None or read.query_qualities[qpos]>=min_phred_score) and \
(skip_last_n_cycles is None or ( read.is_reverse and qpos>skip_last_n_cycles) or (not read.is_reverse and qpos<read.infer_query_length()-skip_last_n_cycles)) and \
(skip_first_n_cycles is None or ( not read.is_reverse and qpos>skip_first_n_cycles) or ( read.is_reverse and qpos<read.infer_query_length()-skip_first_n_cycles)) and \
(only_include_refbase is None or refbase.upper()==only_include_refbase)
}
def get_consensus_dictionaries(R1, R2, only_include_refbase=None, dove_safe=False, min_phred_score=None, skip_first_n_cycles_R1=None, skip_last_n_cycles_R1=None,skip_first_n_cycles_R2=None, skip_last_n_cycles_R2=None, dove_R2_distance=0, dove_R1_distance=0 ):
assert (R1 is None or R1.is_read1) and (R2 is None or R2.is_read2)
if dove_safe:
if R1 is None or R2 is None:
raise ValueError(
'Its not possible to determine a safe region when the alignment of R1 or R2 is not specified')
if R1.is_reverse and not R2.is_reverse:
start, end = R2.reference_start + dove_R2_distance, R1.reference_end - dove_R1_distance -1
elif not R1.is_reverse and R2.is_reverse:
start, end = R1.reference_start + dove_R1_distance, R2.reference_end - dove_R2_distance -1
else:
raise ValueError('This method only works for inwards facing reads')
else:
start, end = None, None
return read_to_consensus_dict(R1, start, end, only_include_refbase=only_include_refbase, skip_last_n_cycles=skip_last_n_cycles_R1, skip_first_n_cycles=skip_first_n_cycles_R1,min_phred_score=min_phred_score), \
read_to_consensus_dict(R2, start, end, only_include_refbase=only_include_refbase, skip_last_n_cycles=skip_last_n_cycles_R2, skip_first_n_cycles=skip_last_n_cycles_R2, min_phred_score=min_phred_score)