|
a |
|
b/singlecellmultiomics/statistic/conversions.py |
|
|
1 |
#!/usr/bin/env python3 |
|
|
2 |
# -*- coding: utf-8 -*- |
|
|
3 |
import seaborn as sns |
|
|
4 |
import matplotlib.pyplot as plt |
|
|
5 |
from .statistic import StatisticHistogram |
|
|
6 |
import singlecellmultiomics.pyutils as pyutils |
|
|
7 |
import collections |
|
|
8 |
import pandas as pd |
|
|
9 |
import matplotlib |
|
|
10 |
matplotlib.rcParams['figure.dpi'] = 160 |
|
|
11 |
matplotlib.use('Agg') |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
class ConversionMatrix(StatisticHistogram): |
|
|
15 |
def __init__(self, args, process_reads=200_000): |
|
|
16 |
StatisticHistogram.__init__(self, args) |
|
|
17 |
self.conversion_obs = collections.defaultdict(collections.Counter) |
|
|
18 |
self.base_obs = collections.defaultdict(collections.Counter) |
|
|
19 |
self.stranded_base_conversions = collections.defaultdict( |
|
|
20 |
collections.Counter) |
|
|
21 |
self.processed_reads = 0 |
|
|
22 |
self.process_reads = process_reads |
|
|
23 |
|
|
|
24 |
def processRead(self, R1,R2): |
|
|
25 |
|
|
|
26 |
for read in [R1,R2]: |
|
|
27 |
if read is None: |
|
|
28 |
continue |
|
|
29 |
|
|
|
30 |
if self.processed_reads >= self.process_reads or read is None or read.is_unmapped or read.mapping_quality < 30: |
|
|
31 |
return |
|
|
32 |
|
|
|
33 |
self.processed_reads += 1 |
|
|
34 |
try: |
|
|
35 |
for index, reference_pos, reference_base in read.get_aligned_pairs( |
|
|
36 |
with_seq=True, matches_only=True): |
|
|
37 |
query_base = read.seq[index] |
|
|
38 |
reference_base = reference_base.upper() |
|
|
39 |
if reference_base != 'N' and query_base != 'N': |
|
|
40 |
k = ( |
|
|
41 |
query_base, 'R1' if read.is_read1 else ( |
|
|
42 |
'R2' if read.is_read2 else 'R?'), ('forward', 'reverse')[ |
|
|
43 |
read.is_reverse]) |
|
|
44 |
|
|
|
45 |
self.base_obs[reference_base][k] += 1 |
|
|
46 |
if reference_base != query_base: |
|
|
47 |
self.conversion_obs[reference_base][k] += 1 |
|
|
48 |
|
|
|
49 |
if read.has_tag('RS'): |
|
|
50 |
k = ( |
|
|
51 |
query_base, |
|
|
52 |
'R1' if read.is_read1 else ( |
|
|
53 |
'R2' if read.is_read2 else 'R?'), |
|
|
54 |
read.get_tag('RS')) |
|
|
55 |
self.stranded_base_conversions[reference_base][k] += 1 |
|
|
56 |
except ValueError: # Fails when the MD tag is not present |
|
|
57 |
continue |
|
|
58 |
|
|
|
59 |
def __repr__(self): |
|
|
60 |
return f'Observed base conversions' |
|
|
61 |
|
|
|
62 |
def get_df(self): |
|
|
63 |
return pd.DataFrame( |
|
|
64 |
self.base_obs).fillna(0).sort_index( |
|
|
65 |
axis=0).sort_index( |
|
|
66 |
axis=1) |
|
|
67 |
|
|
|
68 |
def plot(self, target_path, title=None): |
|
|
69 |
|
|
|
70 |
df = pd.DataFrame( |
|
|
71 |
self.conversion_obs).fillna(0).sort_index( |
|
|
72 |
axis=0).sort_index( |
|
|
73 |
axis=1) |
|
|
74 |
cm = sns.clustermap(df, row_cluster=True, col_cluster=True) |
|
|
75 |
ax = cm.ax_heatmap |
|
|
76 |
ax.set_yticklabels(ax.get_yticklabels(), rotation=0) |
|
|
77 |
cm.ax_heatmap.set_title('Raw conversions') |
|
|
78 |
cm.ax_heatmap.set_xlabel('reference base') |
|
|
79 |
cm.ax_heatmap.set_ylabel('sequenced base') |
|
|
80 |
plt.subplots_adjust(left=0, right=0.8) |
|
|
81 |
if title is not None: |
|
|
82 |
cm.ax_heatmap.set_title(title) |
|
|
83 |
# |
|
|
84 |
plt.savefig(target_path.replace('.png', f'.conversions.png')) |
|
|
85 |
plt.close() |
|
|
86 |
|
|
|
87 |
df = self.get_df() |
|
|
88 |
cm = sns.clustermap(df, row_cluster=False, col_cluster=False) |
|
|
89 |
ax = cm.ax_heatmap |
|
|
90 |
ax.set_yticklabels(ax.get_yticklabels(), rotation=0) |
|
|
91 |
cm.ax_heatmap.set_title('Raw conversions') |
|
|
92 |
cm.ax_heatmap.set_xlabel('reference base') |
|
|
93 |
cm.ax_heatmap.set_ylabel('sequenced base') |
|
|
94 |
#plt.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.0) |
|
|
95 |
plt.subplots_adjust(left=0, right=0.8) |
|
|
96 |
if title is not None: |
|
|
97 |
cm.ax_heatmap.set_title(title) |
|
|
98 |
|
|
|
99 |
plt.savefig(target_path.replace('.png', f'.base_obs.png')) |
|
|
100 |
plt.close() |
|
|
101 |
|
|
|
102 |
if len(self.stranded_base_conversions) == 0: |
|
|
103 |
return |
|
|
104 |
|
|
|
105 |
df = pd.DataFrame( |
|
|
106 |
self.stranded_base_conversions).fillna(0).sort_index( |
|
|
107 |
axis=0).sort_index( |
|
|
108 |
axis=1) |
|
|
109 |
cm = sns.clustermap(df, row_cluster=False, col_cluster=False) |
|
|
110 |
ax = cm.ax_heatmap |
|
|
111 |
ax.set_yticklabels(ax.get_yticklabels(), rotation=0) |
|
|
112 |
cm.ax_heatmap.set_title('Raw conversions') |
|
|
113 |
cm.ax_heatmap.set_xlabel('reference base') |
|
|
114 |
cm.ax_heatmap.set_ylabel('sequenced base') |
|
|
115 |
#plt.tight_layout(pad=0.4, w_pad=0.8, h_pad=1.0) |
|
|
116 |
plt.subplots_adjust(left=0, right=0.8) |
|
|
117 |
if title is not None: |
|
|
118 |
cm.ax_heatmap.set_title(title) |
|
|
119 |
|
|
|
120 |
plt.savefig( |
|
|
121 |
target_path.replace( |
|
|
122 |
'.png', |
|
|
123 |
f'.RS_TAG_strand_conversions.png')) |
|
|
124 |
plt.close() |
|
|
125 |
|
|
|
126 |
def to_csv(self, path): |
|
|
127 |
|
|
|
128 |
self.get_df().to_csv(path) |