|
a |
|
b/singlecellmultiomics/molecule/featureannotatedmolecule.py |
|
|
1 |
from singlecellmultiomics.molecule.molecule import Molecule |
|
|
2 |
import collections |
|
|
3 |
import pandas as pd |
|
|
4 |
|
|
|
5 |
class TranscriptMolecule(Molecule): |
|
|
6 |
|
|
|
7 |
def __init__(self, fragment, |
|
|
8 |
**kwargs): |
|
|
9 |
self.genes=set() |
|
|
10 |
Molecule.__init__(self, fragment, **kwargs) |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
def _add_fragment(self, fragment): |
|
|
14 |
|
|
|
15 |
self.genes.update(fragment.genes) |
|
|
16 |
Molecule._add_fragment(self, fragment) |
|
|
17 |
|
|
|
18 |
def write_tags(self): |
|
|
19 |
|
|
|
20 |
for frag in self: |
|
|
21 |
frag.write_tags() |
|
|
22 |
|
|
|
23 |
Molecule.write_tags(self) |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
|
|
|
27 |
class FeatureAnnotatedMolecule(Molecule): |
|
|
28 |
"""Molecule which is annotated with features (genes/exons/introns, .. ) |
|
|
29 |
""" |
|
|
30 |
|
|
|
31 |
def __init__( |
|
|
32 |
self, |
|
|
33 |
fragment, |
|
|
34 |
features, |
|
|
35 |
stranded=None, |
|
|
36 |
auto_set_intron_exon_features=False, |
|
|
37 |
capture_locations=False, |
|
|
38 |
**kwargs): |
|
|
39 |
""" |
|
|
40 |
Args: |
|
|
41 |
fragments (singlecellmultiomics.fragment.Fragment): Fragments to associate to the molecule |
|
|
42 |
features (singlecellmultiomics.features.FeatureContainer) : container to use to obtain features from |
|
|
43 |
stranded : None; not stranded, False: same strand as R1, True: other strand |
|
|
44 |
capture_locations (bool) : Store information about the locations of the aligned features |
|
|
45 |
auto_set_intron_exon_features(bool) : obtain intron_exon_features upon initialising |
|
|
46 |
**kwargs: extra args |
|
|
47 |
|
|
|
48 |
""" |
|
|
49 |
Molecule.__init__(self, fragment, **kwargs) |
|
|
50 |
self.features = features |
|
|
51 |
self.hits = collections.defaultdict(set) # feature -> hit_bases |
|
|
52 |
self.stranded = stranded |
|
|
53 |
self.is_annotated = False |
|
|
54 |
self.capture_locations = capture_locations |
|
|
55 |
if capture_locations: |
|
|
56 |
self.feature_locations = {} #feature->locations (chrom,start,end, strand) |
|
|
57 |
|
|
|
58 |
self.junctions = set() |
|
|
59 |
self.genes = set() |
|
|
60 |
self.introns = set() |
|
|
61 |
self.exons = set() |
|
|
62 |
self.exon_hit_gene_names = set() # readable names |
|
|
63 |
self.is_spliced = None |
|
|
64 |
|
|
|
65 |
if auto_set_intron_exon_features: |
|
|
66 |
self.set_intron_exon_features() |
|
|
67 |
|
|
|
68 |
def set_spliced(self, is_spliced): |
|
|
69 |
""" Set wether the transcript is spliced, False has priority over True """ |
|
|
70 |
if self.is_spliced and not is_spliced: |
|
|
71 |
# has already been set |
|
|
72 |
self.is_spliced = False |
|
|
73 |
else: |
|
|
74 |
self.is_spliced = is_spliced |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
|
|
|
78 |
def set_intron_exon_features(self): |
|
|
79 |
if not self.is_annotated: |
|
|
80 |
self.annotate() |
|
|
81 |
|
|
|
82 |
# Collect all hits: |
|
|
83 |
hits = self.hits.keys() |
|
|
84 |
|
|
|
85 |
# (gene, transcript) -> set( exon_id .. ) |
|
|
86 |
exon_hits = collections.defaultdict(set) |
|
|
87 |
intron_hits = collections.defaultdict(set) |
|
|
88 |
|
|
|
89 |
for hit, locations in self.hits.items(): |
|
|
90 |
if not isinstance(hit, tuple): |
|
|
91 |
continue |
|
|
92 |
|
|
|
93 |
meta = dict(list(hit)) |
|
|
94 |
if 'gene_id' not in meta: |
|
|
95 |
continue |
|
|
96 |
if meta.get('type') == 'exon': |
|
|
97 |
if 'transcript_id' not in meta: |
|
|
98 |
continue |
|
|
99 |
self.genes.add(meta['gene_id']) |
|
|
100 |
self.exons.add(meta['exon_id']) |
|
|
101 |
if 'transcript_id' not in meta: |
|
|
102 |
raise ValueError( |
|
|
103 |
"Please use an Intron GTF file generated using -id 'transcript_id'") |
|
|
104 |
exon_hits[(meta['gene_id'], meta['transcript_id'])].add( |
|
|
105 |
meta['exon_id']) |
|
|
106 |
if 'gene_name' in meta: |
|
|
107 |
self.exon_hit_gene_names.add(meta['gene_name']) |
|
|
108 |
elif meta.get('type') == 'intron': |
|
|
109 |
self.genes.add(meta['gene_id']) |
|
|
110 |
self.introns.add(meta['gene_id']) |
|
|
111 |
|
|
|
112 |
# Find junctions and add all annotations to annotation sets |
|
|
113 |
debug = [] |
|
|
114 |
|
|
|
115 |
for (gene, transcript), exons_overlapping in exon_hits.items(): |
|
|
116 |
# If two exons are detected from the same gene we detected a |
|
|
117 |
# junction: |
|
|
118 |
if len(exons_overlapping) > 1: |
|
|
119 |
self.junctions.add(gene) |
|
|
120 |
|
|
|
121 |
# We found two exons and an intron: |
|
|
122 |
if gene in self.introns: |
|
|
123 |
self.set_spliced(False) |
|
|
124 |
else: |
|
|
125 |
self.set_spliced(True) |
|
|
126 |
|
|
|
127 |
debug.append( |
|
|
128 |
f'{gene}_{transcript}:' + |
|
|
129 |
','.join( |
|
|
130 |
list(exons_overlapping))) |
|
|
131 |
|
|
|
132 |
# Write exon dictionary: |
|
|
133 |
self.set_meta('DB', ';'.join(debug)) |
|
|
134 |
|
|
|
135 |
def get_hit_df(self): |
|
|
136 |
"""Obtain dataframe with hits |
|
|
137 |
Returns: |
|
|
138 |
pd.DataFrame |
|
|
139 |
""" |
|
|
140 |
if not self.is_annotated: |
|
|
141 |
self.set_intron_exon_features() |
|
|
142 |
|
|
|
143 |
d = {} |
|
|
144 |
tabulated_hits = [] |
|
|
145 |
for hit, locations in self.hits.items(): |
|
|
146 |
if not isinstance(hit, tuple): |
|
|
147 |
continue |
|
|
148 |
meta = dict(list(hit)) |
|
|
149 |
for location in locations: |
|
|
150 |
location_dict = { |
|
|
151 |
'chromosome': location[0], |
|
|
152 |
'start': location[1][0], |
|
|
153 |
'end': location[1][1]} |
|
|
154 |
location_dict.update(meta) |
|
|
155 |
tabulated_hits.append(location_dict) |
|
|
156 |
|
|
|
157 |
return pd.DataFrame(tabulated_hits) |
|
|
158 |
|
|
|
159 |
|
|
|
160 |
def write_tags_to_psuedoreads(self, reads, call_super=True): |
|
|
161 |
# @ todo needs refactor; the psuedoread should just be a Fragment too, solves all issues |
|
|
162 |
if call_super: |
|
|
163 |
Molecule.write_tags_to_psuedoreads(self, reads) |
|
|
164 |
|
|
|
165 |
for read in reads: |
|
|
166 |
if len(self.exons) > 0: |
|
|
167 |
read.set_tag('EX', ','.join(sorted([str(x) for x in self.exons]))) |
|
|
168 |
else: |
|
|
169 |
read.set_tag('EX', None) |
|
|
170 |
|
|
|
171 |
if len(self.introns) > 0: |
|
|
172 |
read.set_tag('IN', ','.join( |
|
|
173 |
sorted([str(x) for x in self.introns]))) |
|
|
174 |
else: |
|
|
175 |
read.set_tag('IN', None) |
|
|
176 |
|
|
|
177 |
if len(self.genes) > 0: |
|
|
178 |
read.set_tag('GN', ','.join(sorted([str(x) for x in self.genes]))) |
|
|
179 |
else: |
|
|
180 |
read.set_tag('GN', None) |
|
|
181 |
|
|
|
182 |
if len(self.junctions) > 0: |
|
|
183 |
read.set_tag('JN', ','.join( |
|
|
184 |
sorted([str(x) for x in self.junctions]))) |
|
|
185 |
# Is transcriptome |
|
|
186 |
read.set_tag('IT', 1) |
|
|
187 |
elif len(self.genes) > 0: |
|
|
188 |
# Maps to gene but not junction |
|
|
189 |
read.set_tag('IT', 0.5) |
|
|
190 |
read.set_tag('JN', None) |
|
|
191 |
else: |
|
|
192 |
# Doesn't map to gene |
|
|
193 |
read.set_tag('IT', 0) |
|
|
194 |
read.set_tag('JN', None) |
|
|
195 |
|
|
|
196 |
if self.is_spliced is True: |
|
|
197 |
read.set_tag('SP', True) |
|
|
198 |
elif self.is_spliced is False: |
|
|
199 |
read.set_tag('SP', False) |
|
|
200 |
if len(self.exon_hit_gene_names): |
|
|
201 |
read.set_tag('gn', ';'.join(list(self.exon_hit_gene_names))) |
|
|
202 |
else: |
|
|
203 |
read.set_tag('gn', None) |
|
|
204 |
|
|
|
205 |
def write_tags(self): |
|
|
206 |
Molecule.write_tags(self) |
|
|
207 |
|
|
|
208 |
# Write cell ranger tags: |
|
|
209 |
if self.umi is not None: |
|
|
210 |
self.set_meta('UB', self.umi) |
|
|
211 |
bc = list(self.get_barcode_sequences())[0] |
|
|
212 |
self.set_meta('CB', bc) |
|
|
213 |
|
|
|
214 |
if len(self.exons) > 0: |
|
|
215 |
self.set_meta('EX', ','.join(sorted([str(x) for x in self.exons]))) |
|
|
216 |
else: |
|
|
217 |
self.set_meta('EX',None) |
|
|
218 |
|
|
|
219 |
if len(self.introns) > 0: |
|
|
220 |
self.set_meta('IN', ','.join( |
|
|
221 |
sorted([str(x) for x in self.introns]))) |
|
|
222 |
else: |
|
|
223 |
self.set_meta('IN',None) |
|
|
224 |
|
|
|
225 |
if len(self.genes) > 0: |
|
|
226 |
self.set_meta('GN', ','.join(sorted([str(x) for x in self.genes]))) |
|
|
227 |
else: |
|
|
228 |
self.set_meta('GN',None) |
|
|
229 |
|
|
|
230 |
if len(self.junctions) > 0: |
|
|
231 |
self.set_meta('JN', ','.join( |
|
|
232 |
sorted([str(x) for x in self.junctions]))) |
|
|
233 |
# Is transcriptome |
|
|
234 |
self.set_meta('IT', 1) |
|
|
235 |
elif len(self.genes) > 0: |
|
|
236 |
# Maps to gene but not junction |
|
|
237 |
self.set_meta('IT', 0.5) |
|
|
238 |
self.set_meta('JN',None) |
|
|
239 |
else: |
|
|
240 |
# Doesn't map to gene |
|
|
241 |
self.set_meta('IT', 0) |
|
|
242 |
self.set_meta('JN', None) |
|
|
243 |
|
|
|
244 |
if self.is_spliced is True: |
|
|
245 |
self.set_meta('SP', True) |
|
|
246 |
elif self.is_spliced is False: |
|
|
247 |
self.set_meta('SP', False) |
|
|
248 |
if len(self.exon_hit_gene_names): |
|
|
249 |
self.set_meta('gn', ';'.join(list(self.exon_hit_gene_names))) |
|
|
250 |
else: |
|
|
251 |
self.set_meta('gn',None) |
|
|
252 |
|
|
|
253 |
def annotate(self, method=0): |
|
|
254 |
""" |
|
|
255 |
Args: |
|
|
256 |
method (int) : 0, obtain blocks and then obtain features. 1, try to obtain features for every aligned base |
|
|
257 |
|
|
|
258 |
""" |
|
|
259 |
# When self.stranded is None, set to None strand. If self.stranded is |
|
|
260 |
# True reverse the strand, otherwise copy the strand |
|
|
261 |
strand = None if self.stranded is None else '+-'[ |
|
|
262 |
(not self.strand if self.stranded else self.strand)] |
|
|
263 |
self.is_annotated = True |
|
|
264 |
if method == 0: |
|
|
265 |
|
|
|
266 |
# Obtain all blocks: |
|
|
267 |
try: |
|
|
268 |
for start, end in self.get_aligned_blocks(): |
|
|
269 |
for hit in self.features.findFeaturesBetween( |
|
|
270 |
chromosome=self.chromosome, sampleStart=start, sampleEnd=end, strand=strand): |
|
|
271 |
hit_start, hit_end, hit_id, hit_strand, hit_ids = hit |
|
|
272 |
self.hits[hit_ids].add( |
|
|
273 |
(self.chromosome, (hit_start, hit_end))) |
|
|
274 |
|
|
|
275 |
if self.capture_locations: |
|
|
276 |
if not hit_id in self.feature_locations: |
|
|
277 |
self.feature_locations[hit_id] = [] |
|
|
278 |
self.feature_locations[hit_id].append( (hit_start, hit_end, hit_strand)) |
|
|
279 |
|
|
|
280 |
except TypeError: |
|
|
281 |
# This happens when no reads map |
|
|
282 |
pass |
|
|
283 |
else: |
|
|
284 |
|
|
|
285 |
for read in self.iter_reads(): |
|
|
286 |
for q_pos, ref_pos in read.get_aligned_pairs( |
|
|
287 |
matches_only=True, with_seq=False): |
|
|
288 |
for hit in self.features.findFeaturesAt( |
|
|
289 |
chromosome=read.reference_name, lookupCoordinate=ref_pos, strand=strand): |
|
|
290 |
hit_start, hit_end, hit_id, hit_strand, hit_ids = hit |
|
|
291 |
self.hits[hit_ids].add((read.reference_name, ref_pos)) |
|
|
292 |
|
|
|
293 |
if self.capture_locations: |
|
|
294 |
if not hit_id in self.feature_locations: |
|
|
295 |
self.feature_locations[hit_id] = [] |
|
|
296 |
self.feature_locations[hit_id].append( (hit_start, hit_end, hit_strand)) |