|
a |
|
b/singlecellmultiomics/methylation/methylation.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# -*- coding: utf-8 -*- |
|
|
3 |
import pysam |
|
|
4 |
import pandas as pd |
|
|
5 |
import numpy as np |
|
|
6 |
from multiprocessing import Pool, Manager |
|
|
7 |
from collections import defaultdict |
|
|
8 |
from singlecellmultiomics.bamProcessing import get_reference_path_from_bam |
|
|
9 |
from singlecellmultiomics.molecule import MoleculeIterator,TAPS |
|
|
10 |
import gzip |
|
|
11 |
from singlecellmultiomics.utils import invert_strand_f, is_autosome |
|
|
12 |
import os |
|
|
13 |
import matplotlib.pyplot as plt |
|
|
14 |
import pyBigWig |
|
|
15 |
|
|
|
16 |
def get_methylation_calls_from_tabfile(path: str): |
|
|
17 |
""" |
|
|
18 |
Reading routine, for reading the default taps-tabulator output files |
|
|
19 |
|
|
|
20 |
Args: |
|
|
21 |
path (str), path to the taps tabulator file to read |
|
|
22 |
|
|
|
23 |
Yields: |
|
|
24 |
contig, cpg_location, strand, methylation_stat (tuple). The cpg location is zero indexed |
|
|
25 |
""" |
|
|
26 |
with (gzip.open(path,'rt') if path.endswith('.gz') else open(path)) as f: |
|
|
27 |
for i,line in enumerate(f): |
|
|
28 |
parts = line.strip().split('\t',4) |
|
|
29 |
meta, contig, cpg_location, methylation_stat, ligation_motif_and_others = parts |
|
|
30 |
|
|
|
31 |
cpg_location = int(cpg_location)-1 |
|
|
32 |
|
|
|
33 |
cell, molecule_id, cut_pos, frag_size ,umi,strand = meta.split(':') |
|
|
34 |
|
|
|
35 |
yield contig, cpg_location, strand, methylation_stat |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
def get_single_cpg_calls_from_tabfile(path: str): |
|
|
39 |
""" |
|
|
40 |
Obtain single CpG calls from taps-tabulator file |
|
|
41 |
|
|
|
42 |
Args: |
|
|
43 |
path (str), path to the taps tabulator file to read, needs to be sorted in order to work correctly |
|
|
44 |
|
|
|
45 |
Yields: |
|
|
46 |
(contig, cpg_location, strand), methylated, unmethylated. The cpg location is zero indexed |
|
|
47 |
""" |
|
|
48 |
prev = None |
|
|
49 |
met,unmet = 0,0 |
|
|
50 |
for contig, cpg_location, strand, methylation_stat in get_methylation_calls_from_tabfile(path): |
|
|
51 |
|
|
|
52 |
current = (contig, cpg_location,strand) |
|
|
53 |
if prev is not None and current!=prev: |
|
|
54 |
yield prev,met,unmet |
|
|
55 |
|
|
|
56 |
met,unmet = 0,0 |
|
|
57 |
if methylation_stat.isupper(): |
|
|
58 |
met+=1 |
|
|
59 |
else: |
|
|
60 |
unmet+=1 |
|
|
61 |
|
|
|
62 |
prev= current |
|
|
63 |
|
|
|
64 |
if met>0 or unmet>0: |
|
|
65 |
yield prev,met,unmet |
|
|
66 |
|
|
|
67 |
def sort_methylation_tabfile(path, pathout,threads=4): |
|
|
68 |
""" |
|
|
69 |
Sort methylation tab file. Sorts first on the chromosome, then the position, then the cell/umi |
|
|
70 |
""" |
|
|
71 |
cmd = f"""/bin/bash -c "zcat {path} | sort -k2,2 -k3,3n -k1,1 --parallel={threads} | gzip -1 > {pathout}" """ |
|
|
72 |
os.system(cmd) |
|
|
73 |
|
|
|
74 |
def methylation_tabfile_to_bed(tabpath: str, bedpath: str, invert_strand=False): |
|
|
75 |
""" Convert methylation tabfile at tabpath to a methylation bedfile at bedpath """ |
|
|
76 |
cmap = plt.get_cmap('bwr') |
|
|
77 |
with open(bedpath, 'w') as o: |
|
|
78 |
for call in get_single_cpg_calls_from_tabfile(tabpath): |
|
|
79 |
(contig,pos,strand),met,unmet = call |
|
|
80 |
beta = (met/(unmet+met)) |
|
|
81 |
rgb = cmap(beta) |
|
|
82 |
o.write(f'{contig}\t{pos}\t{pos+1}\t.\t{min(1000,unmet+met)}\t{invert_strand_f(strand) if invert_strand else strand}\t{pos}\t{pos+1}\t{int(rgb[0]*255)},{int(rgb[1]*255)},{int(255*rgb[2])}\t{unmet+met}\t{int(100*beta)}\n') |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
def iter_methylation_calls_from_bigbed(path: str, MINCOV :int=0, autosomes_only: bool=False): |
|
|
86 |
with pyBigWig.open(path) as f: |
|
|
87 |
|
|
|
88 |
# Iterate over all contigs, exclude scaffolds and only include autosomes |
|
|
89 |
for chrom,l in f.chroms().items(): |
|
|
90 |
if autosomes_only and not is_autosome(chrom): |
|
|
91 |
continue |
|
|
92 |
|
|
|
93 |
for entry in f.entries(chrom,0,l): |
|
|
94 |
name, score, strandedness, _, __, ___, coverage, obs_beta = entry[2].split() |
|
|
95 |
if int(coverage)>=MINCOV: |
|
|
96 |
yield (chrom, entry[0],entry), (float(obs_beta),score,strandedness,int(coverage)) |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
def methylation_calls_from_bigbed_to_dict(path: str, MINCOV :int=0, autosomes_only: bool=False): |
|
|
100 |
"""Obtain all methylation calls from the specified bigbed file |
|
|
101 |
|
|
|
102 |
Args: |
|
|
103 |
path : path to the methylation bigbed file |
|
|
104 |
|
|
|
105 |
MINCOV: minimum amount of reads covering the position to be included |
|
|
106 |
|
|
|
107 |
Returns: |
|
|
108 |
reference_betas (dict) : {chrom : {position : value (float)}} |
|
|
109 |
""" |
|
|
110 |
betas = defaultdict(dict) |
|
|
111 |
|
|
|
112 |
for (chrom,pos,entry),(beta,score,strandedness,coverage) in iter_methylation_calls_from_bigbed(path, MINCOV, autosomes_only): |
|
|
113 |
betas[chrom][pos] = beta |
|
|
114 |
|
|
|
115 |
return betas |
|
|
116 |
|
|
|
117 |
def get_bulk_vector(args): |
|
|
118 |
obj, samples, location = args |
|
|
119 |
return obj.get_bulk_column(samples, location) |
|
|
120 |
|
|
|
121 |
class MethylationCountMatrix: |
|
|
122 |
|
|
|
123 |
def __init__(self, counts: dict = None, threads=None): |
|
|
124 |
# Sample->(contig,bin_start,bin_end)-> [methylated_counts, unmethylated] |
|
|
125 |
self.counts = {} if counts is None else counts |
|
|
126 |
|
|
|
127 |
# { (contig, bin_start, bin_end), (contig, bin_start, bin_end) .. } |
|
|
128 |
#or |
|
|
129 |
# { (contig, bin_start, bin_end,strand), (contig, bin_start, bin_end, strand) .. } |
|
|
130 |
self.sites = set() |
|
|
131 |
self.threads = threads |
|
|
132 |
|
|
|
133 |
def __getitem__(self, key: tuple): |
|
|
134 |
sample, location = key |
|
|
135 |
if not sample in self.counts: |
|
|
136 |
self.counts[sample] = {} |
|
|
137 |
if not location in self.counts[sample]: |
|
|
138 |
self.sites.add(location) |
|
|
139 |
self.counts[sample][location] = [0, 0] |
|
|
140 |
return self.counts[sample][location] |
|
|
141 |
|
|
|
142 |
def get_without_init(self, key: tuple): |
|
|
143 |
# Obtain a key without setting it |
|
|
144 |
# sample, location = key |
|
|
145 |
try: |
|
|
146 |
return self.counts[key[0]][key[1]] |
|
|
147 |
except KeyError: |
|
|
148 |
return (0,0) |
|
|
149 |
|
|
|
150 |
def __setitem__(self, key: tuple, value: list): |
|
|
151 |
sample, location = key |
|
|
152 |
if not sample in self.counts: |
|
|
153 |
self.counts[sample] = {} |
|
|
154 |
self.counts[sample][location] = value |
|
|
155 |
|
|
|
156 |
def update(self, other): |
|
|
157 |
# This does not work for regions with overlap! Those will be overwritten |
|
|
158 |
for sample, counts in other.counts.items(): |
|
|
159 |
if sample not in self.counts: |
|
|
160 |
self.counts[sample] = {} |
|
|
161 |
self.counts[sample].update(counts) |
|
|
162 |
self.sites.update(other.sites) |
|
|
163 |
|
|
|
164 |
def get_sample_list(self): |
|
|
165 |
return sorted(list(self.counts.keys())) |
|
|
166 |
|
|
|
167 |
def __repr__(self): |
|
|
168 |
return f'Methylation call matrix containing {len(self.counts)} samples and {len(self.sites)} locations' |
|
|
169 |
|
|
|
170 |
def prune(self, min_samples: int = 0, min_variance: float = None): |
|
|
171 |
if len(self.sites)==0 or len(self.counts) == 0 or min_samples == 0 and min_variance is None: |
|
|
172 |
return |
|
|
173 |
|
|
|
174 |
for location, row in self.get_bulk_frame(use_multi=False).iterrows(): |
|
|
175 |
if row.n_samples < min_samples: |
|
|
176 |
self.delete_location(location) |
|
|
177 |
elif min_variance is not None and (np.isnan(row.variance) or row.variance < min_variance): |
|
|
178 |
self.delete_location(location) |
|
|
179 |
|
|
|
180 |
def delete_location(self, location): |
|
|
181 |
|
|
|
182 |
drop_samples = [] |
|
|
183 |
for sample in self.counts: |
|
|
184 |
if location in self.counts[sample]: |
|
|
185 |
del self.counts[sample][location] |
|
|
186 |
if len(self.counts[sample]) == 0: |
|
|
187 |
drop_samples.append(sample) |
|
|
188 |
self.sites.remove(location) |
|
|
189 |
|
|
|
190 |
# Remove samples without any data left: |
|
|
191 |
for d in drop_samples: |
|
|
192 |
del self.counts[d] |
|
|
193 |
|
|
|
194 |
def get_sample_distance_matrix(self): |
|
|
195 |
self.check_integrity() |
|
|
196 |
def distance(row, matrix): |
|
|
197 |
# Amount of differences / total comparisons |
|
|
198 |
return np.nansum(np.abs((matrix - row)), axis=1) / (np.isfinite(matrix - row).sum(axis=1)) |
|
|
199 |
|
|
|
200 |
def get_dmat(df): |
|
|
201 |
dmat = np.apply_along_axis(distance, 1, df.values, matrix=df.values) |
|
|
202 |
return pd.DataFrame(dmat, columns=df.index, index=df.index) |
|
|
203 |
|
|
|
204 |
with np.errstate(divide='ignore', invalid='ignore'): |
|
|
205 |
dmat = get_dmat(self.get_frame('beta')) |
|
|
206 |
|
|
|
207 |
while dmat.isna().sum().sum() > 0: |
|
|
208 |
sample = dmat.isna().sum().idxmax() |
|
|
209 |
dmat.drop(sample, 0, inplace=True) |
|
|
210 |
dmat.drop(sample, 1, inplace=True) |
|
|
211 |
|
|
|
212 |
return dmat |
|
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
def get_frame(self, dtype: str): |
|
|
218 |
""" |
|
|
219 |
Get pandas dataframe containing the selected column |
|
|
220 |
|
|
|
221 |
Args: |
|
|
222 |
dtype: either 'methylated', 'unmethylated' or 'beta' |
|
|
223 |
|
|
|
224 |
Returns: |
|
|
225 |
df(pd.DataFrame) : Dataframe containing the selected column, rows are samples, columns are locations |
|
|
226 |
|
|
|
227 |
""" |
|
|
228 |
self.check_integrity() |
|
|
229 |
# Fix columns |
|
|
230 |
columns = list(sorted(self.sites)) |
|
|
231 |
# Create column to index mapping: |
|
|
232 |
column_to_index = {c: i for i, c in enumerate(columns)} |
|
|
233 |
|
|
|
234 |
samples = self.get_sample_list() |
|
|
235 |
|
|
|
236 |
mat = np.zeros((len(samples), len(columns))) |
|
|
237 |
mat[:] = np.nan |
|
|
238 |
|
|
|
239 |
for i, sample in enumerate(samples): |
|
|
240 |
for location, (unmethylated, methylated) in self.counts[sample].items(): |
|
|
241 |
if dtype == 'methylated': |
|
|
242 |
value = methylated |
|
|
243 |
elif dtype == 'unmethylated': |
|
|
244 |
value = unmethylated |
|
|
245 |
elif dtype == 'beta': |
|
|
246 |
value = methylated / (methylated + unmethylated) |
|
|
247 |
else: |
|
|
248 |
raise ValueError |
|
|
249 |
mat[i, [column_to_index[location]]] = value |
|
|
250 |
|
|
|
251 |
return pd.DataFrame(mat, index=samples, columns=pd.MultiIndex.from_tuples(columns)) |
|
|
252 |
|
|
|
253 |
def check_integrity(self): |
|
|
254 |
if len(self.sites) == 0 or len(self.counts) == 0: |
|
|
255 |
print(self) |
|
|
256 |
raise ValueError('The count matrix contains no data, verify if the input data was empty or filtered to stringently') |
|
|
257 |
|
|
|
258 |
|
|
|
259 |
def get_bulk_column(self, samples, location): |
|
|
260 |
|
|
|
261 |
total_un, total_met = 0, 0 |
|
|
262 |
betas = [] |
|
|
263 |
n_samples = 0 |
|
|
264 |
for sample in samples: |
|
|
265 |
unmethylated, methylated = self.get_without_init((sample, location)) |
|
|
266 |
total_un += unmethylated |
|
|
267 |
total_met += methylated |
|
|
268 |
|
|
|
269 |
if methylated + unmethylated > 0: |
|
|
270 |
n_samples += 1 |
|
|
271 |
betas.append(methylated / (methylated + unmethylated)) |
|
|
272 |
|
|
|
273 |
empty = (total_met+total_un) == 0 |
|
|
274 |
return [ total_un, total_met, np.nan if empty else total_met/(total_un+total_met), np.var(betas) if len(betas) else np.nan, n_samples] |
|
|
275 |
|
|
|
276 |
|
|
|
277 |
def get_bulk_frame(self, dtype='pd', use_multi=True): |
|
|
278 |
""" |
|
|
279 |
Get pandas dataframe containing the selected columns |
|
|
280 |
|
|
|
281 |
|
|
|
282 |
Returns: |
|
|
283 |
df(pd.DataFrame) : Dataframe containing the selected column, rows are locations, |
|
|
284 |
|
|
|
285 |
""" |
|
|
286 |
self.check_integrity() |
|
|
287 |
# Fix columns |
|
|
288 |
columns = list(sorted(self.sites)) |
|
|
289 |
# Create column to index mapping: |
|
|
290 |
column_to_index = {c: i for i, c in enumerate(columns)} |
|
|
291 |
|
|
|
292 |
samples = self.get_sample_list() |
|
|
293 |
|
|
|
294 |
mat = np.zeros((len(columns), 5)) |
|
|
295 |
mat[:] = np.nan |
|
|
296 |
|
|
|
297 |
|
|
|
298 |
if use_multi and (self.threads is not None and self.threads>1): |
|
|
299 |
with Pool(self.threads) as workers: |
|
|
300 |
for index,column in enumerate( |
|
|
301 |
workers.imap( get_bulk_vector, |
|
|
302 |
( (self, samples, location) |
|
|
303 |
for index, location in enumerate(columns) ), chunksize=100_000)): |
|
|
304 |
mat[index, :] = column |
|
|
305 |
else: |
|
|
306 |
for index, location in enumerate(columns): |
|
|
307 |
mat[index, :] = self.get_bulk_column(samples, location) |
|
|
308 |
|
|
|
309 |
if dtype == 'pd': |
|
|
310 |
return pd.DataFrame(mat, index=pd.MultiIndex.from_tuples(columns), |
|
|
311 |
columns=('unmethylated', 'methylated', 'beta', 'variance', 'n_samples')) |
|
|
312 |
elif dtype == 'np': |
|
|
313 |
return mat |
|
|
314 |
else: |
|
|
315 |
raise ValueError('dtype should be pd or np') |
|
|
316 |
|
|
|
317 |
|
|
|
318 |
def methylation_dict_to_location_values(methylation_per_location_per_cell: dict, select_samples=None)->tuple: |
|
|
319 |
""" |
|
|
320 |
Convert a dictionary |
|
|
321 |
{ location -> cell -> [0,0] } |
|
|
322 |
into |
|
|
323 |
{ contig : [ locations (list) ] } |
|
|
324 |
{ contig : [ values (list) ] } |
|
|
325 |
""" |
|
|
326 |
write_locations = defaultdict(list) # contig -> locations |
|
|
327 |
write_values = defaultdict(dict) # contig -> location -> value |
|
|
328 |
|
|
|
329 |
for location, cell_info_for_location in methylation_per_location_per_cell.items(): |
|
|
330 |
# Calculate beta value: |
|
|
331 |
unmet = 0 |
|
|
332 |
met = 0 |
|
|
333 |
|
|
|
334 |
for cell, (c_unmet, c_met) in cell_info_for_location.items(): |
|
|
335 |
if select_samples is not None and not cell in select_samples: |
|
|
336 |
continue |
|
|
337 |
unmet+=c_unmet |
|
|
338 |
met+=c_met |
|
|
339 |
|
|
|
340 |
support = unmet+met |
|
|
341 |
if support == 0: |
|
|
342 |
continue |
|
|
343 |
contig = location[0] |
|
|
344 |
position = location[1] |
|
|
345 |
|
|
|
346 |
write_locations[contig].append(position) |
|
|
347 |
write_values[contig][position] = met / support |
|
|
348 |
|
|
|
349 |
return write_locations, write_values |
|
|
350 |
|
|
|
351 |
|
|
|
352 |
|
|
|
353 |
def twolist(): |
|
|
354 |
return [0,0] |
|
|
355 |
|
|
|
356 |
def defdict(): |
|
|
357 |
return defaultdict(twolist) |
|
|
358 |
|
|
|
359 |
|
|
|
360 |
def met_unmet_dict_to_betas(methylation_per_cell_per_cpg: dict, bin_size=None) -> dict: |
|
|
361 |
""" |
|
|
362 |
Convert dictionary of count form to beta form: |
|
|
363 |
|
|
|
364 |
cell -> location -> [unmet, met] |
|
|
365 |
|
|
|
366 |
to |
|
|
367 |
|
|
|
368 |
cell -> location -> beta |
|
|
369 |
""" |
|
|
370 |
export_table = defaultdict(dict) #location->cell->beta |
|
|
371 |
for (contig, start), data_per_cell in methylation_per_cell_per_cpg.items(): |
|
|
372 |
for cell,(met,unmet) in data_per_cell.items(): |
|
|
373 |
if type(start)==int and bin_size is not None: |
|
|
374 |
export_table[cell][contig, start, start+bin_size] = met/ (unmet+met) |
|
|
375 |
else: |
|
|
376 |
export_table[cell][contig, start] = met/ (unmet+met) |
|
|
377 |
return export_table |
|
|
378 |
|
|
|
379 |
|
|
|
380 |
def extract_cpgs(bam, |
|
|
381 |
contig, |
|
|
382 |
fragment_class, |
|
|
383 |
molecule_class, |
|
|
384 |
start = None, |
|
|
385 |
end = None, |
|
|
386 |
fetch_start = None, |
|
|
387 |
fetch_end = None, |
|
|
388 |
context='Z', |
|
|
389 |
stranded=False, |
|
|
390 |
mirror_cpg = False, |
|
|
391 |
allelic=False, |
|
|
392 |
select_samples=None, |
|
|
393 |
pool_alias = None, |
|
|
394 |
reference_path = None, |
|
|
395 |
methylation_consensus_kwargs= {}, |
|
|
396 |
bin_size=None): |
|
|
397 |
|
|
|
398 |
methylation_per_cell_per_cpg = defaultdict(defdict) # location -> cell -> [0,0] |
|
|
399 |
|
|
|
400 |
taps = TAPS() |
|
|
401 |
with pysam.AlignmentFile(bam) as al,\ |
|
|
402 |
pysam.FastaFile((get_reference_path_from_bam(bam) if reference_path is None else reference_path)) as reference: |
|
|
403 |
|
|
|
404 |
for molecule in MoleculeIterator( |
|
|
405 |
al, |
|
|
406 |
fragment_class=fragment_class, |
|
|
407 |
molecule_class=molecule_class, |
|
|
408 |
molecule_class_args={ |
|
|
409 |
'reference':reference, |
|
|
410 |
'taps':taps, |
|
|
411 |
'taps_strand':'R', |
|
|
412 |
|
|
|
413 |
'methylation_consensus_kwargs':methylation_consensus_kwargs, |
|
|
414 |
}, |
|
|
415 |
fragment_class_args={}, |
|
|
416 |
contig = contig, |
|
|
417 |
start=fetch_start, |
|
|
418 |
end=fetch_end |
|
|
419 |
): |
|
|
420 |
if allelic: |
|
|
421 |
allele = molecule.allele |
|
|
422 |
|
|
|
423 |
if select_samples is not None and not molecule.sample in select_samples: |
|
|
424 |
continue |
|
|
425 |
|
|
|
426 |
for (cnt, pos), call in molecule.methylation_call_dict.items(): |
|
|
427 |
|
|
|
428 |
if (start is not None and pos<start) or (end is not None and pos>=end): |
|
|
429 |
continue |
|
|
430 |
|
|
|
431 |
ctx = call['context'] |
|
|
432 |
if ctx.upper()!=context: |
|
|
433 |
continue |
|
|
434 |
|
|
|
435 |
if mirror_cpg and context=='Z' and not molecule.strand: |
|
|
436 |
pos-=1 |
|
|
437 |
|
|
|
438 |
if pool_alias: |
|
|
439 |
location_key = pool_alias |
|
|
440 |
else: |
|
|
441 |
if bin_size is not None: |
|
|
442 |
location_key = [cnt, int(bin_size*int(pos/bin_size))] |
|
|
443 |
else: |
|
|
444 |
location_key = [cnt,pos] |
|
|
445 |
if allelic: |
|
|
446 |
location_key += [allele] |
|
|
447 |
|
|
|
448 |
if stranded: |
|
|
449 |
location_key += [molecule.strand] |
|
|
450 |
|
|
|
451 |
methylation_per_cell_per_cpg[tuple(location_key)][molecule.sample][int(ctx.isupper())]+=1 |
|
|
452 |
|
|
|
453 |
return methylation_per_cell_per_cpg |