|
a |
|
b/singlecellmultiomics/bamProcessing/plotRegion.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
|
|
|
3 |
|
|
|
4 |
from multiprocessing import Pool |
|
|
5 |
from singlecellmultiomics.bamProcessing.bamFunctions import mate_iter |
|
|
6 |
import argparse |
|
|
7 |
import pysam |
|
|
8 |
from glob import glob |
|
|
9 |
import pandas as pd |
|
|
10 |
from singlecellmultiomics.bamProcessing import get_contig_sizes |
|
|
11 |
from collections import Counter, defaultdict |
|
|
12 |
from singlecellmultiomics.features import FeatureContainer |
|
|
13 |
import os |
|
|
14 |
from matplotlib.patches import Rectangle |
|
|
15 |
import matplotlib as mpl |
|
|
16 |
from scipy.ndimage import gaussian_filter |
|
|
17 |
import seaborn as sns |
|
|
18 |
import numpy as np |
|
|
19 |
import matplotlib.pyplot as plt |
|
|
20 |
from itertools import product |
|
|
21 |
from singlecellmultiomics.bamProcessing import get_contigs_with_reads |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
|
26 |
|
|
|
27 |
def _generate_count_dict(args): |
|
|
28 |
|
|
|
29 |
bam_path, bin_size, contig, start, stop = args #reference_path = args |
|
|
30 |
|
|
|
31 |
#reference_handle = pysam.FastaFile(reference_path) |
|
|
32 |
#reference = CachedFasta(reference_handle) |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
cut_counts = defaultdict(Counter ) |
|
|
36 |
i = 0 |
|
|
37 |
with pysam.AlignmentFile(bam_path) as alignments: |
|
|
38 |
|
|
|
39 |
for R1,R2 in mate_iter(alignments, contig=contig, start=start, stop=stop): |
|
|
40 |
|
|
|
41 |
if R1 is None or R1.is_duplicate or not R1.has_tag('DS') or R1.is_qcfail: |
|
|
42 |
continue |
|
|
43 |
|
|
|
44 |
cut_pos = R1.get_tag('DS') |
|
|
45 |
sample = R1.get_tag('SM') |
|
|
46 |
|
|
|
47 |
bin_idx=int(cut_pos/bin_size)*bin_size |
|
|
48 |
cut_counts[(contig,bin_idx)][sample] += 1 |
|
|
49 |
|
|
|
50 |
return cut_counts, contig, bam_path |
|
|
51 |
|
|
|
52 |
|
|
|
53 |
def get_binned_counts(bams, bin_size, regions=None): |
|
|
54 |
|
|
|
55 |
fs = 1000 |
|
|
56 |
if regions is None: |
|
|
57 |
regions = [(c,None,None) for c in get_contig_sizes(bams[0]).keys()] |
|
|
58 |
|
|
|
59 |
else: |
|
|
60 |
for i,r in enumerate(regions): |
|
|
61 |
if type(r)==str: |
|
|
62 |
regions[i] = (r,None,None) |
|
|
63 |
else: |
|
|
64 |
contig, start, end =r |
|
|
65 |
if type(start)==int: |
|
|
66 |
start = max(0,start-fs) |
|
|
67 |
|
|
|
68 |
regions[i] = (contig,start,end) |
|
|
69 |
|
|
|
70 |
jobs = [(bam_path, bin_size, *region) for region, bam_path in product(regions, bams)] |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
cut_counts = defaultdict(Counter) |
|
|
74 |
with Pool() as workers: |
|
|
75 |
|
|
|
76 |
for i, (cc, contig, bam_path) in enumerate(workers.imap(_generate_count_dict,jobs)): |
|
|
77 |
|
|
|
78 |
for k,v in cc.items(): |
|
|
79 |
cut_counts[k] += v |
|
|
80 |
|
|
|
81 |
print(i,'/', len(jobs), end='\r') |
|
|
82 |
|
|
|
83 |
return pd.DataFrame(cut_counts).T |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
|
|
|
87 |
def plot_region(counts, features, contig, start, end, sigma=2, target=None, caxlabel='Molecules per spike-in'): |
|
|
88 |
|
|
|
89 |
if target is None: |
|
|
90 |
target = f'{contig}_{start}_{end}.png' |
|
|
91 |
|
|
|
92 |
def create_gene_models(start,end,ax): |
|
|
93 |
|
|
|
94 |
exon_height = 0.010 |
|
|
95 |
gene_height = 0.0002 |
|
|
96 |
spacer = 0.035 |
|
|
97 |
|
|
|
98 |
overlap_dist = 200_000 |
|
|
99 |
|
|
|
100 |
|
|
|
101 |
gene_y = {} |
|
|
102 |
ymax = 0 |
|
|
103 |
for fs,fe,name,strand, feature_meta in features.features[contig]: |
|
|
104 |
|
|
|
105 |
|
|
|
106 |
if not (((fs>=start or fe>=start) and (fs<=end or fe<=end))): |
|
|
107 |
continue |
|
|
108 |
feature_meta = dict(feature_meta) |
|
|
109 |
|
|
|
110 |
if feature_meta.get('type') == 'gene': |
|
|
111 |
|
|
|
112 |
if not 'gene_name' in feature_meta or feature_meta.get('gene_name').startswith('AC'): |
|
|
113 |
continue |
|
|
114 |
|
|
|
115 |
# Determine g-y coordinate: |
|
|
116 |
|
|
|
117 |
gy_not_avail = set() |
|
|
118 |
for gene,(s,e,loc) in gene_y.items(): |
|
|
119 |
if (s+overlap_dist>=fs and s-overlap_dist<=fe) or (e+overlap_dist>=fs and e-overlap_dist<=fe): |
|
|
120 |
# Overlap: |
|
|
121 |
gy_not_avail.add(loc) |
|
|
122 |
|
|
|
123 |
gy = 0 |
|
|
124 |
while gy in gy_not_avail: |
|
|
125 |
gy+=1 |
|
|
126 |
|
|
|
127 |
|
|
|
128 |
gene_y[name] = (fs,fe,gy) |
|
|
129 |
|
|
|
130 |
y_offset = gy * spacer |
|
|
131 |
|
|
|
132 |
ymax = max(y_offset+gene_height,ymax) |
|
|
133 |
|
|
|
134 |
r = Rectangle((fs,-gene_height*0.5 + y_offset), fe-fs, gene_height, angle=0.0, color='k') |
|
|
135 |
|
|
|
136 |
ax.add_patch( r ) |
|
|
137 |
ax.text((fe+fs)*0.5,-1.6*exon_height + y_offset,feature_meta.get('gene_name'),horizontalalignment='center', |
|
|
138 |
verticalalignment='center',fontsize=3) |
|
|
139 |
#print(feature_meta) |
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
|
143 |
if False: |
|
|
144 |
|
|
|
145 |
for xx in range(3): |
|
|
146 |
for fs,fe,name,strand, feature_meta in features.features[contig]: |
|
|
147 |
|
|
|
148 |
if not (((fs>=start or fe>=start) and (fs<=end or fe<=end))): |
|
|
149 |
continue |
|
|
150 |
|
|
|
151 |
feature_meta = dict(feature_meta) |
|
|
152 |
if not name in gene_y: |
|
|
153 |
continue |
|
|
154 |
|
|
|
155 |
if feature_meta.get('type') == 'exon': |
|
|
156 |
y_offset = gene_y[name][2]*spacer |
|
|
157 |
ymax = max(y_offset+exon_height,ymax) |
|
|
158 |
r = Rectangle((fs,-exon_height*0.5 + y_offset), fe-fs, exon_height, angle=0.0,color='k', lw=0) |
|
|
159 |
ax.add_patch( r ) |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
|
|
|
163 |
ax.set_xlim(start,end) |
|
|
164 |
ax.set_ylim(-0.1,ymax) |
|
|
165 |
#ax.axis('off') |
|
|
166 |
ax.set_yticks([]) |
|
|
167 |
ax.set_xlabel(f'chr{contig} location bp', fontsize=6) |
|
|
168 |
|
|
|
169 |
#print([t.get_text() for t in ax.get_xticklabels()]) |
|
|
170 |
#ax.set_xticklabels([t.get_text() for t in ax.get_xticklabels()],fontsize=4) |
|
|
171 |
ax.set_xticklabels(ax.get_xticks(), fontsize=4) |
|
|
172 |
|
|
|
173 |
|
|
|
174 |
ax.tick_params(length=0.5) |
|
|
175 |
|
|
|
176 |
|
|
|
177 |
for sigma in range(2,3): |
|
|
178 |
|
|
|
179 |
mpl.rcParams['figure.dpi'] = 300 |
|
|
180 |
|
|
|
181 |
font = {'family' : 'helvetica', |
|
|
182 |
'weight' : 'normal', |
|
|
183 |
'size' : 8} |
|
|
184 |
|
|
|
185 |
mpl.rc('font', **font) |
|
|
186 |
|
|
|
187 |
if end - start < 3_000_000: |
|
|
188 |
mode ='k' |
|
|
189 |
stepper = 100_000 |
|
|
190 |
res = 100 |
|
|
191 |
else: |
|
|
192 |
mode='M' |
|
|
193 |
stepper=1_000_000 |
|
|
194 |
res = 1 |
|
|
195 |
|
|
|
196 |
|
|
|
197 |
|
|
|
198 |
qf = counts.loc[:, [(c,p) for c,p in counts if c==contig and p>=start and p<=end] ].sort_index() |
|
|
199 |
qf = qf.sort_index(1).sort_index(0) |
|
|
200 |
qf = pd.DataFrame(gaussian_filter(qf, sigma=(0.00001,sigma)), index=qf.index, columns=qf.columns) |
|
|
201 |
qf = qf.sort_index(1).sort_index(0) |
|
|
202 |
|
|
|
203 |
cm = sns.clustermap(qf, |
|
|
204 |
#z_score=0, |
|
|
205 |
row_cluster=False, |
|
|
206 |
col_cluster=False, |
|
|
207 |
vmax=np.percentile(qf,99.5),#0.0005, |
|
|
208 |
#vmax=10, |
|
|
209 |
dendrogram_ratio=0.1, |
|
|
210 |
#row_colors=row_colors.loc[qf.index].drop('LOWESS_STAGE',1), |
|
|
211 |
figsize=(8,4), cmap='Greys', cbar_kws={"shrink": .1}, |
|
|
212 |
cbar_pos=(0.0, 0.5, 0.01, 0.16),) |
|
|
213 |
|
|
|
214 |
ax = cm.ax_col_dendrogram |
|
|
215 |
qf.mean().plot.bar(ax=ax,color='k',width=1) |
|
|
216 |
|
|
|
217 |
|
|
|
218 |
ax.set_yticks([]) |
|
|
219 |
|
|
|
220 |
cm.ax_heatmap.set_xticks([]) #np.arange(start,end, 1_000_000)) |
|
|
221 |
cm.ax_heatmap.set_yticks([]) |
|
|
222 |
|
|
|
223 |
|
|
|
224 |
cm.ax_heatmap.set_ylabel(f'{qf.shape[0]} single cells', fontsize=8) |
|
|
225 |
cm.ax_heatmap.tick_params(length=0.5) |
|
|
226 |
cm.ax_heatmap.set_xlabel(None) |
|
|
227 |
|
|
|
228 |
ax.grid() |
|
|
229 |
cm.cax.set_ylabel(caxlabel,fontsize=6) |
|
|
230 |
cm.cax.tick_params(labelsize=4) |
|
|
231 |
#plt.suptitle(mark, x=0.05) |
|
|
232 |
|
|
|
233 |
|
|
|
234 |
fig = plt.gcf() |
|
|
235 |
heatmap_start_x,heatmap_start_y, heatmap_end_x, heatmap_end_y = cm.ax_heatmap.get_position().bounds |
|
|
236 |
|
|
|
237 |
width = heatmap_end_x #-heatmap_start_x |
|
|
238 |
height = 0.2 if features is not None else 0.05 |
|
|
239 |
ax = fig.add_axes( (heatmap_start_x, heatmap_start_y-height-0.02, width, height) ) |
|
|
240 |
ax.ticklabel_format(axis='x',style='sci') |
|
|
241 |
|
|
|
242 |
sns.despine(fig=fig, ax=ax) |
|
|
243 |
if features is not None: |
|
|
244 |
create_gene_models(start,end,ax=ax) |
|
|
245 |
else: |
|
|
246 |
ax.set_xlim(start,end) |
|
|
247 |
#ax.axis('off') |
|
|
248 |
ax.set_yticks([]) |
|
|
249 |
ax.set_xlabel(f'chr{contig} location bp', fontsize=6) |
|
|
250 |
|
|
|
251 |
#ax.set_xticklabels(ax.get_xticks(), fontsize=4) |
|
|
252 |
plt.xticks(fontsize=4) |
|
|
253 |
ax.tick_params(length=0.5) |
|
|
254 |
|
|
|
255 |
plt.savefig(target) |
|
|
256 |
plt.close() |
|
|
257 |
|
|
|
258 |
|
|
|
259 |
if __name__=='__main__': |
|
|
260 |
argparser = argparse.ArgumentParser( |
|
|
261 |
formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
|
|
262 |
description='Plot a genomic region') |
|
|
263 |
|
|
|
264 |
argparser.add_argument('bams', type=str, nargs='+', help='(X) Training bam files') |
|
|
265 |
|
|
|
266 |
argparser.add_argument('-regions', type=str, help='Regions to plot, with a bin size behind it, for example: 1:1000-100000:1000 , will be a single region plotted with a 1000bp bin size split regions by commas without a space') |
|
|
267 |
argparser.add_argument('-features', type=str, help='Gene models to plot (.gtf file or .gtf.gz)', required=False) |
|
|
268 |
argparser.add_argument('-norm', type=str, help='Normalize to, select from : total-molecules,spike', default='total-molecules') |
|
|
269 |
argparser.add_argument('-prefix', type=str, help='Prefix for output file',default='') |
|
|
270 |
argparser.add_argument('-format', type=str, help='png or svg',default='png') |
|
|
271 |
|
|
|
272 |
args = argparser.parse_args() |
|
|
273 |
|
|
|
274 |
regions = [] |
|
|
275 |
contigs = set() |
|
|
276 |
for region in args.regions.split(','): |
|
|
277 |
contig = region.split(':')[0] |
|
|
278 |
if not '-' in region: |
|
|
279 |
start, end = None, None |
|
|
280 |
else: |
|
|
281 |
start, end = region.split(':')[1].split('-') |
|
|
282 |
start = int(start) |
|
|
283 |
end = int(end) |
|
|
284 |
bin_size = int(region.split(':')[-1]) |
|
|
285 |
if start is not None: |
|
|
286 |
print(f'Region: {contig} from {start} to {end} with bin size : {bin_size}') |
|
|
287 |
else: |
|
|
288 |
print(f'Region: {contig} with bin size : {bin_size}') |
|
|
289 |
contigs.add(contig) |
|
|
290 |
regions.append( ((contig,start,end), bin_size)) |
|
|
291 |
|
|
|
292 |
contigs=list(contigs) |
|
|
293 |
bams = args.bams |
|
|
294 |
|
|
|
295 |
if args.features is not None: |
|
|
296 |
print('Reading features') |
|
|
297 |
features = FeatureContainer() |
|
|
298 |
if len(contigs)==1: |
|
|
299 |
print(f'Reading only features from {contigs[0]}') |
|
|
300 |
features.loadGTF(args.features,store_all=True,contig=contigs[0]) |
|
|
301 |
else: |
|
|
302 |
features.loadGTF(args.features,store_all=True) |
|
|
303 |
else: |
|
|
304 |
features = None |
|
|
305 |
print('Counting') |
|
|
306 |
|
|
|
307 |
# Obtain counts per cell |
|
|
308 |
norm = 'spike' |
|
|
309 |
if norm == 'spike': |
|
|
310 |
normalize_to_counts = get_binned_counts(bams, bin_size=10_000_000, regions=['J02459.1']) |
|
|
311 |
elif norm=='total-molecules': |
|
|
312 |
normalize_to_counts = get_binned_counts(bams, bin_size=10_000_000) |
|
|
313 |
|
|
|
314 |
for region, region_bin_size in regions: |
|
|
315 |
print(f'Plotting {region}') |
|
|
316 |
contig, start, end = region |
|
|
317 |
region_counts = get_binned_counts(bams, region_bin_size, regions=[ region ] ) |
|
|
318 |
counts = (region_counts/normalize_to_counts.sum()).fillna(0).T.sort_index(1).sort_index(0) |
|
|
319 |
|
|
|
320 |
# Fill non intialized bins with zeros: |
|
|
321 |
add = [] |
|
|
322 |
for i in np.arange(counts.columns[0][1], counts.columns[-1][1], region_bin_size): |
|
|
323 |
if not (contig,i) in counts.columns: |
|
|
324 |
add.append((contig,i)) |
|
|
325 |
|
|
|
326 |
for a in add: |
|
|
327 |
counts[a] = 0 |
|
|
328 |
|
|
|
329 |
counts = counts.sort_index(1) |
|
|
330 |
|
|
|
331 |
|
|
|
332 |
target = args.prefix+f'{contig}_{start}-{end}_{region_bin_size}.{args.format}' |
|
|
333 |
plot_region(counts, features, contig, start, end, sigma=2, target=target, caxlabel='Molecules per spike-in' if norm =='spike' else 'Molecules / total molecules') |