|
a |
|
b/singlecellmultiomics/bamProcessing/bamPlotRTstats.py |
|
|
1 |
#!/usr/bin/env python3 |
|
|
2 |
# -*- coding: utf-8 -*- |
|
|
3 |
import singlecellmultiomics.features |
|
|
4 |
import matplotlib.pyplot as plt |
|
|
5 |
import numpy as np |
|
|
6 |
import itertools |
|
|
7 |
import pandas as pd |
|
|
8 |
import importlib |
|
|
9 |
import singlecellmultiomics.universalBamTagger.universalBamTagger as ut |
|
|
10 |
import pysamiterators.iterators as pyts |
|
|
11 |
import matplotlib.lines as mlines |
|
|
12 |
import os |
|
|
13 |
import sys |
|
|
14 |
import pysam |
|
|
15 |
import collections |
|
|
16 |
import argparse |
|
|
17 |
import gzip |
|
|
18 |
import pickle |
|
|
19 |
import matplotlib |
|
|
20 |
matplotlib.rcParams['figure.dpi'] = 160 |
|
|
21 |
matplotlib.use('Agg') |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
def nlaIII_molecule_acceptance_function(molecule): |
|
|
25 |
first_read = molecule[0][0] |
|
|
26 |
if first_read.mapping_quality < 60: |
|
|
27 |
return False |
|
|
28 |
reject = False |
|
|
29 |
if first_read.has_tag('XA'): |
|
|
30 |
for alt_align in first_read.get_tag('XA').split(';'): |
|
|
31 |
if len(alt_align) == 0: # Sometimes this tag is empty for some reason |
|
|
32 |
continue |
|
|
33 |
|
|
|
34 |
hchrom, hpos, hcigar, hflag = alt_align.split(',') |
|
|
35 |
if not hchrom.endswith('_alt'): |
|
|
36 |
reject = True |
|
|
37 |
break |
|
|
38 |
return reject |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
if __name__ == '__main__': |
|
|
42 |
argparser = argparse.ArgumentParser( |
|
|
43 |
formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
|
|
44 |
description='Visualise feature density of a bam file. (Coverage around stop codons, start codons, genes etc)') |
|
|
45 |
argparser.add_argument('bamFile', type=str) |
|
|
46 |
argparser.add_argument( |
|
|
47 |
'-head', |
|
|
48 |
type=int, |
|
|
49 |
help='Process this many molecules') |
|
|
50 |
argparser.add_argument('-binSize', type=int, default=30) |
|
|
51 |
argparser.add_argument( |
|
|
52 |
'-maxfs', |
|
|
53 |
type=int, |
|
|
54 |
default=900, |
|
|
55 |
help='X axis limit of fragment size plot') |
|
|
56 |
argparser.add_argument('-maxOverseq', type=int, default=4) |
|
|
57 |
argparser.add_argument('--notstrict', action='store_true') |
|
|
58 |
argparser.add_argument('-o', type=str, default='RT_dist') |
|
|
59 |
|
|
|
60 |
args = argparser.parse_args() |
|
|
61 |
|
|
|
62 |
def dd(): |
|
|
63 |
return collections.defaultdict(collections.Counter) |
|
|
64 |
|
|
|
65 |
fragment_distribution = collections.Counter() |
|
|
66 |
fragment_distribution_raw = collections.defaultdict( |
|
|
67 |
collections.Counter) # overseq -> fragmentisze -> counts |
|
|
68 |
# Read size fragments |
|
|
69 |
fragment_distribution_raw_rf = collections.defaultdict( |
|
|
70 |
dd) # lib -> overseq -> fragmentisze (span) -> counts |
|
|
71 |
gc_distribution = collections.Counter() |
|
|
72 |
gc_frag_distribution = collections.defaultdict( |
|
|
73 |
collections.Counter) # fragment size -> observed gc/at+gc ratio |
|
|
74 |
# fragmentSize -> umi obs |
|
|
75 |
|
|
|
76 |
rt_frag_distribution = collections.defaultdict(collections.Counter) |
|
|
77 |
# fragment size -> amount of RT reactions -> count |
|
|
78 |
|
|
|
79 |
observed_cuts = collections.defaultdict() |
|
|
80 |
used = 0 |
|
|
81 |
used_reads = 0 |
|
|
82 |
gc_capture = False |
|
|
83 |
with pysam.AlignmentFile(args.bamFile) as a: |
|
|
84 |
for i, molecule in enumerate( |
|
|
85 |
ut.MoleculeIterator_OLD( |
|
|
86 |
a, umi_hamming_distance=1)): |
|
|
87 |
|
|
|
88 |
if not args.notstrict and not nlaIII_molecule_acceptance_function( |
|
|
89 |
molecule): |
|
|
90 |
continue |
|
|
91 |
|
|
|
92 |
if args.head is not None and used > args.head: |
|
|
93 |
print('Stoppping, saw enough molecules') |
|
|
94 |
break |
|
|
95 |
|
|
|
96 |
rt_reactions = ut.molecule_to_random_primer_dict(molecule) |
|
|
97 |
amount_of_rt_reactions = len(rt_reactions) |
|
|
98 |
|
|
|
99 |
# this obtains the maximum fragment size: |
|
|
100 |
frag_chrom, frag_start, frag_end = pyts.getListSpanningCoordinates( |
|
|
101 |
[v for v in itertools.chain.from_iterable(molecule) if v is not None]) |
|
|
102 |
|
|
|
103 |
# Obtain the fragment sizes of all RT reactions: |
|
|
104 |
rt_sizes = [] |
|
|
105 |
for (rt_end, hexamer), fragment in rt_reactions.items(): |
|
|
106 |
rt_chrom, rt_start, rt_end = pyts.getListSpanningCoordinates( |
|
|
107 |
itertools.chain.from_iterable(fragment)) |
|
|
108 |
rt_sizes.append([rt_end - rt_start]) |
|
|
109 |
|
|
|
110 |
first_read = molecule[0][0] |
|
|
111 |
site = first_read.get_tag('DS') |
|
|
112 |
strand = first_read.get_tag('RS') |
|
|
113 |
library = first_read.get_tag('LY') |
|
|
114 |
# if gc_capture: |
|
|
115 |
# sequence = reference.fetch(frag_chrom, frag_start, frag_end) |
|
|
116 |
# gc = sequence.count('C')+ sequence.count('G') |
|
|
117 |
# length = len(sequence) |
|
|
118 |
used += 1 |
|
|
119 |
|
|
|
120 |
# if gc_capture: |
|
|
121 |
# gc_distribution[gc/length] += 1 |
|
|
122 |
# gc_frag_distribution[fragment_size][gc/length] += 1 |
|
|
123 |
# fragment_distribution_raw[len(molecule)][fragment_size]+=1 |
|
|
124 |
|
|
|
125 |
if len(rt_sizes) == 0: |
|
|
126 |
mean_rt_size = 0 |
|
|
127 |
else: |
|
|
128 |
mean_rt_size = int(np.mean(rt_sizes)) |
|
|
129 |
fragment_distribution_raw_rf[library][len( |
|
|
130 |
molecule)][mean_rt_size] += 1 |
|
|
131 |
rt_frag_distribution[mean_rt_size][len(rt_reactions)] += 1 |
|
|
132 |
used_reads += len(molecule) |
|
|
133 |
|
|
|
134 |
bin_size = args.binSize |
|
|
135 |
m_overseq = args.maxOverseq |
|
|
136 |
|
|
|
137 |
with gzip.open(f'{args.o}_raw_data.pickle.gz', 'wb') as fo: |
|
|
138 |
|
|
|
139 |
pickle.dump(fragment_distribution_raw_rf, fo) |
|
|
140 |
|
|
|
141 |
for library in fragment_distribution_raw_rf: |
|
|
142 |
fig, axes = plt.subplots(1, 1, figsize=(10, 7)) |
|
|
143 |
ax = axes |
|
|
144 |
ax.set_title( |
|
|
145 |
f'Read fragment size distribution\n{used} molecules / {used_reads} fragments analysed\n{library}') |
|
|
146 |
table = {} |
|
|
147 |
|
|
|
148 |
for overseq in range(1, m_overseq): |
|
|
149 |
try: |
|
|
150 |
# Rebin in 10bp bins: |
|
|
151 |
rebinned = collections.Counter() |
|
|
152 |
for f_size, obs in fragment_distribution_raw_rf[library][overseq].most_common( |
|
|
153 |
): |
|
|
154 |
rebinned[int(f_size / bin_size) * bin_size] += obs |
|
|
155 |
obs_dist_fsize = np.array(list(rebinned.keys())) |
|
|
156 |
obs_dist_freq = np.array(list(rebinned.values())) |
|
|
157 |
sorting_order = np.argsort(obs_dist_fsize) |
|
|
158 |
obs_dist_fsize = obs_dist_fsize[sorting_order] |
|
|
159 |
obs_dist_freq = obs_dist_freq[sorting_order] |
|
|
160 |
obs_dist_density = obs_dist_freq / np.sum(obs_dist_freq) |
|
|
161 |
|
|
|
162 |
for i, x in enumerate(obs_dist_fsize): |
|
|
163 |
table[(overseq, x)] = {'obs_dist_freq': obs_dist_freq[i], |
|
|
164 |
'obs_dist_density': obs_dist_density[i]} |
|
|
165 |
|
|
|
166 |
ax.plot( |
|
|
167 |
obs_dist_fsize, obs_dist_density, c=( |
|
|
168 |
overseq / m_overseq, 0, 0), label=f'{overseq} read fragments / umi') |
|
|
169 |
ax.set_xlim(-10, args.maxfs) |
|
|
170 |
ax.legend() |
|
|
171 |
ax.set_xlabel('fragment size') |
|
|
172 |
ax.set_ylabel('density') |
|
|
173 |
except Exception as e: |
|
|
174 |
print(e) |
|
|
175 |
pass |
|
|
176 |
plt.tight_layout() |
|
|
177 |
plt.savefig(f'{args.o}_{library}.png') |
|
|
178 |
pd.DataFrame(table).to_csv(f'{args.o}_{library}.csv') |
|
|
179 |
try: |
|
|
180 |
plt.close() |
|
|
181 |
except Exception as e: |
|
|
182 |
pass |
|
|
183 |
|
|
|
184 |
# Export the table: |