|
a |
|
b/data/.Rhistory |
|
|
1 |
library(lmQCM) |
|
|
2 |
setwd(dirname(rstudioapi::getSourceEditorContext()$path)) |
|
|
3 |
options(stringsAsFactors = F) |
|
|
4 |
dataset = {} # KIRP |
|
|
5 |
######################################################################## |
|
|
6 |
# Clinical |
|
|
7 |
######################################################################## |
|
|
8 |
dataset[['clinical']] = read.table('KIRP/clinical/nationwidechildrens.org_clinical_patient_kirp.txt', header = T, sep = '\t') |
|
|
9 |
dataset[['clinical']] = dataset[['clinical']][3:dim(dataset[['clinical']])[1],] |
|
|
10 |
colnames(dataset[['clinical']]) |
|
|
11 |
head(dataset[['clinical']]) |
|
|
12 |
View(dataset) |
|
|
13 |
colnames(dataset[['clinical']]) |
|
|
14 |
dataset[['clinical']]$age_at_diagnosis |
|
|
15 |
dataset[['clinical']]$age_at_diagnosis = strtoi(dataset[['clinical']]$age_at_diagnosis) |
|
|
16 |
dataset[['clinical']]$last_contact_days_to = strtoi(dataset[['clinical']]$last_contact_days_to) |
|
|
17 |
dataset[['clinical']]$death_days_to = strtoi(dataset[['clinical']]$death_days_to) |
|
|
18 |
dataset[['clinical']]$tobacco_smoking_history_indicator = strtoi(dataset[['clinical']]$tobacco_smoking_history_indicator) |
|
|
19 |
dataset[['clinical']]$tobacco_smoking_history_indicator |
|
|
20 |
dataset[['clinical']]$age_at_diagnosis = strtoi(dataset[['clinical']]$age_at_diagnosis) |
|
|
21 |
dataset[['clinical']]$last_contact_days_to = strtoi(dataset[['clinical']]$last_contact_days_to) |
|
|
22 |
dataset[['clinical']]$death_days_to = strtoi(dataset[['clinical']]$death_days_to) |
|
|
23 |
print('use valid \'death_days_to\' to replace \'last_contact_days_to\'') |
|
|
24 |
# days_to_last_followup and days_to_death |
|
|
25 |
dataset[['clinical']]$survival_days = dataset[['clinical']]$last_contact_days_to |
|
|
26 |
dataset[['clinical']]$survival_days[!is.na(dataset[['clinical']]$death_days_to)] = dataset[['clinical']]$death_days_to[!is.na(dataset[['clinical']]$death_days_to)] |
|
|
27 |
# extract useful columns |
|
|
28 |
dataset[['clinical']] = dataset[['clinical']][, c('bcr_patient_barcode', 'gender','age_at_diagnosis', 'vital_status','survival_days')] |
|
|
29 |
dataset[['clinical']] = dataset[['clinical']][complete.cases(dataset[['clinical']]),] |
|
|
30 |
print(paste0('[clinical] ', dim(dataset[['clinical']])[1], ' complete rows found in clinical data.')) |
|
|
31 |
dataset[['clinical']] |
|
|
32 |
dataset[['TMB']] = read.table("KIRP/TMB/KIRP_TMB.csv", header = T, row.names = 1, sep = ",") |
|
|
33 |
print(paste0('[TMB] ', dim(dataset[['TMB']])[1], ' complete rows found in clinical data.')) |
|
|
34 |
######################################################################## |
|
|
35 |
# CNB |
|
|
36 |
######################################################################## |
|
|
37 |
# Xiaohui Zhan: |
|
|
38 |
# https://www.nature.com/articles/ng.3725 |
|
|
39 |
# a) For high quality CNVs ,the length of segmental region >20kb |
|
|
40 |
# |
|
|
41 |
# b) The number of probes spanning a CNV (a segmental region) to be |
|
|
42 |
# at least 10 to decrease false positives in calling CNVs. |
|
|
43 |
# |
|
|
44 |
# c) For a segmental region ,if the segment mean < |0.2|,this segmental |
|
|
45 |
# region should be discard.(Generally ,we using +/-0.2 as threshold |
|
|
46 |
# for a duplication/deletion. Because lots of noise will be introduced |
|
|
47 |
# from the microarray. The thresholds(+/- 0.2) were derived by examining |
|
|
48 |
# the distribution of segment mean values from tumor and normal samples) |
|
|
49 |
SNP = read.table("LUAD/CNB/broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.seg", sep = "\t", header = T) |
|
|
50 |
SNP$LENGTH = SNP$End - SNP$Start |
|
|
51 |
SNP.filtered = SNP[(SNP$LENGTH >= 20000) & |
|
|
52 |
(SNP$Num_Probes >= 10) & |
|
|
53 |
(abs(SNP$Segment_Mean) >= 0.2),] |
|
|
54 |
# SNP = read.table("data/UCSC Xena/broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.xena", sep = "\t", header = T) |
|
|
55 |
SNP.filtered.sum = aggregate(SNP.filtered$LENGTH, by=list(Category=SNP.filtered$Sample), FUN=sum) |
|
|
56 |
# 1Mb = 1,000 kb = 1,000,000 pb |
|
|
57 |
SNP.filtered.sum$LENGTH_KB = SNP.filtered.sum$x/1000 |
|
|
58 |
# remove normal group 10A, 11A, ... |
|
|
59 |
SNP.filtered.sum = SNP.filtered.sum[as.numeric(substr(SNP.filtered.sum$Category, 14, 15)) == 1, ] # only based on primary cancer (01A) |
|
|
60 |
barcode = substr(SNP.filtered.sum$Category, 1, 12) |
|
|
61 |
length(unique(barcode)) == length(barcode) |
|
|
62 |
# samebarcode = names(table(barcode)[table(barcode)>=2]) |
|
|
63 |
# same = unlist(lapply(samebarcode, function(x) which(grepl(x, SNP.filtered.sum$Category)))) |
|
|
64 |
# SNP.filtered.sum$Category[same] |
|
|
65 |
#### Get patients information |
|
|
66 |
pinfo = read.table("LUAD/CNB/data/UCSC Xena/TCGA_phenotype_denseDataOnlyDownload.tsv", sep = "\t", header = T) |
|
|
67 |
pinfo$barcode = substr(pinfo$sample, 1, 12) |
|
|
68 |
SNP.filtered.sum$CANCER = pinfo$X_primary_disease[match(barcode, pinfo$barcode)] |
|
|
69 |
study.abbr = read.table("KIRP/CNB/data/TCGA study abbreviations.tsv", sep = "\t", header = T) |
|
|
70 |
study.abbr$Study.Name = tolower(study.abbr$Study.Name) |
|
|
71 |
SNP.f2 = SNP.filtered.sum[SNP.filtered.sum$CANCER %in% study.abbr$Study.Name,] |
|
|
72 |
SNP.f2$CANCER_ABBR = study.abbr$Study.Abbreviation[match(SNP.f2$CANCER, study.abbr$Study.Name)] |
|
|
73 |
SNP.f3 = SNP.f2[SNP.f2$CANCER_ABBR %in% c("BLCA", "BRCA","CESC","HNSC","KIRC", "KIRP", "LIHC", "LUAD", |
|
|
74 |
"LUSC", "OV", "PAAD","STAD"),] |
|
|
75 |
table(SNP.f3$CANCER_ABBR) |
|
|
76 |
dataset[['CNB']] = SNP.f3[SNP.f3$CANCER_ABBR == "KIRP",] |
|
|
77 |
dataset[['CNB']] = data.frame(cbind(dataset[['CNB']]$Category, dataset[['CNB']]$LENGTH_KB)) |
|
|
78 |
colnames(dataset[['CNB']]) = c("barcode", "LENGTH_KB") |
|
|
79 |
dataset[['CNB']]$barcode = unlist(lapply(dataset[['CNB']]$barcode, function(x) substr(x, 1, 12) )) |
|
|
80 |
print(paste0('[CNB] ', dim(dataset[['CNB']])[1], ' complete rows found in clinical data.')) |