--- a +++ b/data/.Rhistory @@ -0,0 +1,80 @@ +library(lmQCM) +setwd(dirname(rstudioapi::getSourceEditorContext()$path)) +options(stringsAsFactors = F) +dataset = {} # KIRP +######################################################################## +# Clinical +######################################################################## +dataset[['clinical']] = read.table('KIRP/clinical/nationwidechildrens.org_clinical_patient_kirp.txt', header = T, sep = '\t') +dataset[['clinical']] = dataset[['clinical']][3:dim(dataset[['clinical']])[1],] +colnames(dataset[['clinical']]) +head(dataset[['clinical']]) +View(dataset) +colnames(dataset[['clinical']]) +dataset[['clinical']]$age_at_diagnosis +dataset[['clinical']]$age_at_diagnosis = strtoi(dataset[['clinical']]$age_at_diagnosis) +dataset[['clinical']]$last_contact_days_to = strtoi(dataset[['clinical']]$last_contact_days_to) +dataset[['clinical']]$death_days_to = strtoi(dataset[['clinical']]$death_days_to) +dataset[['clinical']]$tobacco_smoking_history_indicator = strtoi(dataset[['clinical']]$tobacco_smoking_history_indicator) +dataset[['clinical']]$tobacco_smoking_history_indicator +dataset[['clinical']]$age_at_diagnosis = strtoi(dataset[['clinical']]$age_at_diagnosis) +dataset[['clinical']]$last_contact_days_to = strtoi(dataset[['clinical']]$last_contact_days_to) +dataset[['clinical']]$death_days_to = strtoi(dataset[['clinical']]$death_days_to) +print('use valid \'death_days_to\' to replace \'last_contact_days_to\'') +# days_to_last_followup and days_to_death +dataset[['clinical']]$survival_days = dataset[['clinical']]$last_contact_days_to +dataset[['clinical']]$survival_days[!is.na(dataset[['clinical']]$death_days_to)] = dataset[['clinical']]$death_days_to[!is.na(dataset[['clinical']]$death_days_to)] +# extract useful columns +dataset[['clinical']] = dataset[['clinical']][, c('bcr_patient_barcode', 'gender','age_at_diagnosis', 'vital_status','survival_days')] +dataset[['clinical']] = dataset[['clinical']][complete.cases(dataset[['clinical']]),] +print(paste0('[clinical] ', dim(dataset[['clinical']])[1], ' complete rows found in clinical data.')) +dataset[['clinical']] +dataset[['TMB']] = read.table("KIRP/TMB/KIRP_TMB.csv", header = T, row.names = 1, sep = ",") +print(paste0('[TMB] ', dim(dataset[['TMB']])[1], ' complete rows found in clinical data.')) +######################################################################## +# CNB +######################################################################## +# Xiaohui Zhan: +# https://www.nature.com/articles/ng.3725 +# a) For high quality CNVs ,the length of segmental region >20kb +# +# b) The number of probes spanning a CNV (a segmental region) to be +# at least 10 to decrease false positives in calling CNVs. +# +# c) For a segmental region ,if the segment mean < |0.2|,this segmental +# region should be discard.(Generally ,we using +/-0.2 as threshold +# for a duplication/deletion. Because lots of noise will be introduced +# from the microarray. The thresholds(+/- 0.2) were derived by examining +# the distribution of segment mean values from tumor and normal samples) +SNP = read.table("LUAD/CNB/broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.seg", sep = "\t", header = T) +SNP$LENGTH = SNP$End - SNP$Start +SNP.filtered = SNP[(SNP$LENGTH >= 20000) & +(SNP$Num_Probes >= 10) & +(abs(SNP$Segment_Mean) >= 0.2),] +# SNP = read.table("data/UCSC Xena/broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.xena", sep = "\t", header = T) +SNP.filtered.sum = aggregate(SNP.filtered$LENGTH, by=list(Category=SNP.filtered$Sample), FUN=sum) +# 1Mb = 1,000 kb = 1,000,000 pb +SNP.filtered.sum$LENGTH_KB = SNP.filtered.sum$x/1000 +# remove normal group 10A, 11A, ... +SNP.filtered.sum = SNP.filtered.sum[as.numeric(substr(SNP.filtered.sum$Category, 14, 15)) == 1, ] # only based on primary cancer (01A) +barcode = substr(SNP.filtered.sum$Category, 1, 12) +length(unique(barcode)) == length(barcode) +# samebarcode = names(table(barcode)[table(barcode)>=2]) +# same = unlist(lapply(samebarcode, function(x) which(grepl(x, SNP.filtered.sum$Category)))) +# SNP.filtered.sum$Category[same] +#### Get patients information +pinfo = read.table("LUAD/CNB/data/UCSC Xena/TCGA_phenotype_denseDataOnlyDownload.tsv", sep = "\t", header = T) +pinfo$barcode = substr(pinfo$sample, 1, 12) +SNP.filtered.sum$CANCER = pinfo$X_primary_disease[match(barcode, pinfo$barcode)] +study.abbr = read.table("KIRP/CNB/data/TCGA study abbreviations.tsv", sep = "\t", header = T) +study.abbr$Study.Name = tolower(study.abbr$Study.Name) +SNP.f2 = SNP.filtered.sum[SNP.filtered.sum$CANCER %in% study.abbr$Study.Name,] +SNP.f2$CANCER_ABBR = study.abbr$Study.Abbreviation[match(SNP.f2$CANCER, study.abbr$Study.Name)] +SNP.f3 = SNP.f2[SNP.f2$CANCER_ABBR %in% c("BLCA", "BRCA","CESC","HNSC","KIRC", "KIRP", "LIHC", "LUAD", +"LUSC", "OV", "PAAD","STAD"),] +table(SNP.f3$CANCER_ABBR) +dataset[['CNB']] = SNP.f3[SNP.f3$CANCER_ABBR == "KIRP",] +dataset[['CNB']] = data.frame(cbind(dataset[['CNB']]$Category, dataset[['CNB']]$LENGTH_KB)) +colnames(dataset[['CNB']]) = c("barcode", "LENGTH_KB") +dataset[['CNB']]$barcode = unlist(lapply(dataset[['CNB']]$barcode, function(x) substr(x, 1, 12) )) +print(paste0('[CNB] ', dim(dataset[['CNB']])[1], ' complete rows found in clinical data.'))