[40a513]: / RNA-seq / Functions / survival.combined.R

Download this file

196 lines (166 with data), 9.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
source(file = "/home/longzhilin/Analysis_Code/code/analysis.diff.survival.TCGA.R")
DESeq2.normalized_counts <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/DESeq2.normalized_counts.rds")
DESeq2.normalized_counts <- log2(DESeq2.normalized_counts+1)
DESeq2.result <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/DESeq2.result.rds")
clin.data <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/clin.data.rds")
survival.combined <- function(geneA, geneB, clin.data, DESeq2.result, DESeq2.normalized_counts, risk.table = T){
gene.overlap <- intersect(c(geneA, geneB), rownames(DESeq2.result))
diff.gene.pro.sig.gene <- DESeq2.result[gene.overlap,]
interest.gene.sig <- data.frame(Gene = gene.overlap)
sample.id <- colnames(DESeq2.normalized_counts)
sample.id <- substr(sample.id, 1, 16)
sample.type <- substr(sample.id, 14, 15)
sample.id <- substr(sample.id, 1, 15)
patient.overlap <- intersect(clin.data$Sample, sample.id)
exp.data.process.pro <- DESeq2.normalized_counts[,match(patient.overlap, sample.id)]
clin.info <- clin.data[match(patient.overlap, clin.data$Sample),]
exp.A <- exp.data.process.pro[geneA,]
exp.B <- exp.data.process.pro[geneB,]
med.exp <- median(exp.A)
high.group <- which(exp.A>med.exp)
exp.A.label <- rep(paste0("Low ", geneA), length(exp.A))
exp.A.label[high.group] <- paste0("High ", geneA)
med.exp <- median(exp.B)
high.group <- which(exp.B>med.exp)
exp.B.label <- rep(paste0("Low ", geneB), length(exp.B))
exp.B.label[high.group] <- paste0("High ", geneB)
groups <- paste0(exp.A.label, " + ", exp.B.label)
OS.data <- data.frame(Patient_ID = patient.overlap, event = clin.info$OS, time = clin.info$OS_time, sample.label = groups)
DFS.data <- data.frame(Patient_ID = patient.overlap, event = clin.info$DFS, time = clin.info$DFS_time, sample.label = groups)
p1 <- plot.surv(OS.data, risk.table = risk.table, HR = T, ylab = "Overall Survival", main = paste0(geneA, " + ", geneB), surv.median.line = "hv", xlab = "Time (Month)", colors = c("#D95319", "#F39B7F", "#3B6793","#4285F4"))
print(p1)
p2 <- plot.surv(DFS.data, risk.table = risk.table, HR = T, ylab = "Disease-Free Survival", main = paste0(geneA, " + ", geneB), surv.median.line = "hv", xlab = "Time (Month)", colors = c("#D95319", "#F39B7F", "#3B6793","#4285F4"))
print(p2)
return(list(OS.data = OS.data, DFS.data = DFS.data))
}
plot.surv <- function(clinical.data, upper.time = NULL, xscale = 1, xlab = "Time", median.time = TRUE,
surv.median.line = "none", HR = FALSE, risk.table = TRUE, pval = TRUE,
conf.int = FALSE, main = NULL, ylab = "Survival probability", colors = c("#D95319", "#F39B7F", "#3B6793","#4285F4")) {
#Load related R packages
require(survival)
require(survminer)
require(RColorBrewer)
require(gridExtra)
#Determine the unit of event type and time
# survival.event <- survival.event[1];
# unit.xlabel <- unit.xlabel[1];
#If upper.time is set, the samples whose survival time exceeds upper.time will be removed
if (!is.null(upper.time)) clinical.data <- clinical.data[clinical.data$time <= upper.time,]
#set color
if (!is.factor(clinical.data$sample.label))
clinical.data$sample.label <- as.factor(clinical.data$sample.label)
t.name <- levels(clinical.data$sample.label)
if (length(t.name)> 6) stop("Sample grouping>6, exceeding the function acceptance range")
t.col <- colors[1:length(t.name)]
# Construct a living object
km.curves <- survfit(Surv(time, event)~sample.label, data=clinical.data)
# Calculate HR value and 95% CI
if (length(t.name) == 2) {
if (HR) {
cox.obj <- coxph(Surv(time, event)~sample.label, data=clinical.data)
tmp <- summary(cox.obj)
HRs <- round(tmp$coefficients[ ,2], digits = 2)
HR.confint.lower <- round(tmp$conf.int[,"lower .95"], 2)
HR.confint.upper <- round(tmp$conf.int[,"upper .95"], 2)
HRs <- paste0(HRs, " (", HR.confint.lower, "-", HR.confint.upper, ")")
}
}
# Construct the legend display text in the survival image
legend.content <- substr(names(km.curves$strata), start = 14, stop = 1000)
# x-axis scale unit conversion
if (is.numeric(xscale) | (xscale %in% c("d_m", "d_y", "m_d", "m_y", "y_d", "y_m"))) {
xscale = xscale
} else {
stop('xscale should be numeric or one of c("d_m", "d_y", "m_d", "m_y", "y_d", "y_m").')
}
# Implicit function: conversion of survival time unit
.format_xticklabels <- function(labels, xscale){
# 1 year = 365.25 days
# 1 month = 365.25/12 = 30.4375 days
if (is.numeric(xscale)) xtrans <- 1/xscale
else
xtrans <- switch(xscale,
d_m = 12/365.25,
d_y = 1/365.25,
m_d = 365.25/12,
m_y = 1/12,
y_d = 365.25,
y_m = 12,
1
)
round(labels*xtrans,2)
}
# Add the median survival time and its 95% CI in the figure and place it in the subtitle position
subtitle <- NULL
if (median.time) {
if (is.numeric(xscale)) {
median.km.obj = km.curves
} else if (xscale %in% c("d_m", "d_y", "m_d", "m_y", "y_d", "y_m")) {
clinical.data$time <- .format_xticklabels(labels = clinical.data$time, xscale = xscale)
median.km.obj <- survfit(Surv(time, event)~sample.label, data=clinical.data)
}
survival.time.info <- NULL
survival.time.info <- rbind(survival.time.info, summary(median.km.obj)$table)
median.survival <- round(survival.time.info[!duplicated(survival.time.info[,7:9]),7:9], digits = 2) # 注意:这里取得的置信区间上界可能为NA
if (length(levels(clinical.data$sample.label)) == 1) {
tmp1 <- levels(clinical.data$sample.label)
} else {
tmp1 <- do.call(rbind,strsplit(rownames(summary(median.km.obj)$table), split = "="))[,2]
}
tmp2 <- paste(median.survival[,1], "(", median.survival[,2], "-", median.survival[,3], ")")
subtitle <- paste(tmp1, tmp2, sep = ":", collapse = "\n")
}
# ggsurvplot
ggsurv <- ggsurvplot(km.curves, # survfit object with calculated statistics.
data = clinical.data, # data used to fit survival curves.
palette = t.col,
risk.table = risk.table, # show risk table.
pval = pval, # show p-value of log-rank test.
surv.median.line = surv.median.line, # add the median survival pointer.
title = main, #main title
subtitle = subtitle, #sub title
font.main = 15,
xlab = xlab, # customize X axis label.
ylab = ylab, # customize Y axis label
xscale = xscale,
#legend
legend.title = "",
legend.labs = legend.content,
legend = c(0.8,0.9),
font.legend = 9,
#risk table
tables.theme = theme_cleantable(),
risk.table.title = "No. at risk:",
risk.table.y.text.col = T,
risk.table.y.text = FALSE,
tables.height = 0.15,
risk.table.fontsize = 3
)
if (length(t.name) == 2) {
if (HR)
ggsurv$plot <- ggsurv$plot + ggplot2::annotate("text", x = max(km.curves$time)/12,
y = 0.15, size = 5, label = paste("HR=", HRs))
}
ggsurv$plot <- ggsurv$plot + theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(size = 10),
plot.margin = unit(c(5.5, 5.5, 5.5, 50), "points"))
ggsurv$table <- ggsurv$table + theme(plot.title = element_text(hjust = -0.04),
plot.margin = unit(c(5.5, 5.5, 5.5, 50), "points"))
if(length(t.name) > 2) {
# pairwise: log rank P value
res <- pairwise_survdiff(Surv(time, event)~sample.label, data=clinical.data);
pairwise.pvalue <- round(res$p.value, digits = 4);
pairwise.pvalue[which(pairwise.pvalue < 0.0001)] <- "<0.0001";
pairwise.pvalue[is.na(pairwise.pvalue)] <- "-"
# add table
tt <- ttheme_minimal(core = list(fg_params = list(col = "black"),bg_params = list(fill = NA, col = "black")),
colhead = list(fg_params = list(col = NA),bg_params = list(fill = t.col, col = "black")),
rowhead = list(fg_params = list(col = NA, hjust = 1),bg_params = list(fill = c("white",t.col[-1]), col = "black"))
)
pairwise.table <- tableGrob(pairwise.pvalue, theme = tt)
ggsurv <- ggarrange(ggarrange(ggsurv$plot, ggsurv$table, nrow=2, heights=c(2,0.5)),
pairwise.table, nrow=2, heights = c(2,0.5),
labels = c("","p from pairwise comparisons"),
hjust = 0, font.label = list(size = 15, face = "plain"))
}
ggsurv
}