[40a513]: / RNA-seq / AnalysisPipeline / 6.3.cellphoneDB.analysis.R

Download this file

534 lines (473 with data), 31.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#' @description: cellphoneDB analysis
library(psych)
library(qgraph)
library(igraph)
library(tidyverse)
library(ComplexHeatmap)
library(circlize)
library(ggpubr)
library(dplyr)
library(vegan)
library(Seurat)
source(file = "/home/longzhilin/Analysis_Code/code/cellphoneDB.dotplot.R")
source(file = "/home/longzhilin/Analysis_Code/code/Plot.CircularChart.R")
# TCGA data
source(file = "/home/longzhilin/Analysis_Code/code/analysis.diff.survival.TCGA.R")
source(file = "/home/longzhilin/Analysis_Code/code/survival.combined.R")
DESeq2.normalized_counts <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/DESeq2.normalized_counts.rds")
DESeq2.normalized_counts <- log2(DESeq2.normalized_counts+1)
DESeq2.result <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/DESeq2.result.rds")
clin.data <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/clin.data.rds")
# ICB data
source(file = "/home/longzhilin/Analysis_Code/SurvivalAnalysis/Cox.function.R")
source(file = "/home/longzhilin/Analysis_Code/code/RCC.ICB.analysis.R")
normalized_expression <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/ICB.therapy/normalized_expression.log2.rds")
patient.info.RNA <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/ICB.therapy/patient.info.RNA.rds")
patient.info.RNA$Sex <- gsub("^F|FEMALE|Female$", 0, patient.info.RNA$Sex)
patient.info.RNA$Sex <- gsub("^M|Male|MALE$", 1, patient.info.RNA$Sex)
patient.info.RNA$Tumor_Sample_Primary_or_Metastasis <- gsub("PRIMARY", 0, patient.info.RNA$Tumor_Sample_Primary_or_Metastasis)
patient.info.RNA$Tumor_Sample_Primary_or_Metastasis <- gsub("METASTASIS", 1, patient.info.RNA$Tumor_Sample_Primary_or_Metastasis)
data.merge <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/data.merge.pro.rds")
DefaultAssay(data.merge) <- "RNA"
Idents(data.merge) <- data.merge$cellType_low
Macrophage <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/5.Immune/Macrophage/sub.scRNA.harmony.pro.rds") # 3 cluster
CD8.T <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/5.Immune/CD8T/sub.scRNA.harmony.pro.rds")
idx1 <- match(colnames(Macrophage), colnames(data.merge)) # 4319 cells
idx2 <- match(colnames(CD8.T), colnames(data.merge)) # 3728 cells
cell.Type <- data.merge$cellType_low
cell.Type[idx1] <- as.character(Macrophage$cellType3)
cell.Type[idx2] <- paste0("CD8+ T-", CD8.T$cellType3)
data.merge$cellType2 <- cell.Type
cell.Type.new <- setdiff(unique(cell.Type), c("CD8+ T cell", "Macrophage"))
data.merge.new <- subset(data.merge, subset = cellType2 %in% cell.Type.new)
DefaultAssay(data.merge.new) <- "RNA"
setwd("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/6.CrossTalk/CellPhoneDB")
mean.threshold <- 1
pval.threshold <- 0.05
colors <- c("#00A087", "#4DBBD5", "#E64B35", "#3C5488")
## Filter custom ligand receptor, partner_a is ligand, partner_b is receptor
# 3511*7
ligand.receptor.data <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/ligand_receptor/ligand_receptor.data.csv", header = T, sep = ",", stringsAsFactors = F)
ligand_receptor <- paste0(ligand.receptor.data$partner_a, "_", ligand.receptor.data$partner_b)
All.interaction.number <- read.table("interaction_count.txt", header = T, sep = "\t", stringsAsFactors = F)
cell.types <- All.interaction.number$X
order.value <- c("CD4+ T cell", "Treg", paste0("CD8+ T-", levels(CD8.T$cellType3)), "Proliferative T cell", "NK/NKT cell", "B cell",
levels(Macrophage$cellType3), "Monocyte", "Dendritic cell", "Neutrophil", "Mast cell",
"Endothelium VCAM1+", "Endothelium VCAM1-", "Mesangial cell", "Tumor")
data.merge.new$cellType2 <- factor(data.merge.new$cellType2, levels = order.value)
Idents(data.merge.new) <- data.merge.new$cellType2
order.value <- gsub("CD8\\+ T-Exhausted IEG", "CD8\\+ T-IEG", order.value)
####################################Overall Cell Interaction Mode######## ##########################
#Only keep user_curated, remove the interaction pair in cellphoneDB (including complex)
mypvals <- read.delim("Renal/pvalues.txt", check.names = FALSE) # 3479 *411
mymeans <- read.delim("Renal/means.txt", check.names = FALSE)
sig.means <- read.delim("Renal/significant_means.txt", check.names = FALSE)
mypvals.usr <- mypvals[which(mypvals$annotation_strategy == "user_curated"),] # 2930 * 411
mymeans.usr <- mymeans[which(mymeans$annotation_strategy == "user_curated"),]
sig.means.usr <- sig.means[which(sig.means$annotation_strategy == "user_curated"),]
# Identification ligand and receptor, used to identify the first gene
mypvals.usr$ligand <- rep("Ligand", nrow(mypvals.usr))
mymeans.usr$ligand <- rep("Ligand", nrow(mymeans.usr))
sig.means.usr$ligand <- rep("Ligand", nrow(sig.means.usr))
res <- for(i in 1:nrow(mypvals.usr)){
index1 <- match(mypvals.usr$interacting_pair[i], ligand_receptor)
if(is.na(index1)){
mypvals.usr$ligand[i] <- "Receptor"
mymeans.usr$ligand[i] <- "Receptor"
}
index2 <- match(sig.means.usr$interacting_pair[i], ligand_receptor)
if(is.na(index2)){
sig.means.usr$ligand[i] <- "Receptor"
}
}
# Move the position of the ligand column, position the 11th column
mypvals.usr <- mypvals.usr[,c(1:10, 412, 11:411)]
mymeans.usr <- mymeans.usr[,c(1:10, 412, 11:411)]
sig.means.usr <- sig.means.usr[,c(1:10, 413, 11:412)]
# 2930 ligand-receptors
saveRDS(mypvals.usr, file = "mypvals.usr.rds")
saveRDS(mymeans.usr, file = "mymeans.usr.rds")
saveRDS(sig.means.usr, file = "sig.means.usr.rds")
write.table(mypvals.usr, file = "Renal/mypvals.usr.txt", row.names = F, col.names = T, sep = "\t", quote = F)
write.table(mymeans.usr, file = "Renal/mymeans.usr.txt", row.names = F, col.names = T, sep = "\t", quote = F)
write.table(sig.means.usr, file = "Renal/sig.means.usr.txt", row.names = F, col.names = T, sep = "\t", quote = F)
####Statistics of the ligand-receptor interactions of each cell type
#ligand
sig.interaction.cellType <- lapply(cell.types, function(x){
mymeans.usr %>% dplyr::select("interacting_pair", "ligand", starts_with(x), ends_with(x)) %>% reshape2::melt() -> meansdf
colnames(meansdf)<- c("interacting_pair", "ligand", "CC","means")
mypvals.usr %>% dplyr::select("interacting_pair", "ligand", starts_with(x), ends_with(x)) %>% reshape2::melt()-> pvalsdf
colnames(pvalsdf)<- c("interacting_pair", "ligand", "CC","pvals")
pvalsdf$joinlab<- paste0(pvalsdf$interacting_pair, "_", pvalsdf$CC)
meansdf$joinlab<- paste0(meansdf$interacting_pair, "_", meansdf$CC)
pldf <- merge(pvalsdf, meansdf, by = "joinlab")
sig.interaction <- pldf %>% filter(means >= mean.threshold & pvals < pval.threshold)
sig.interaction <- sig.interaction[, -c(6,7,8)]
colnames(sig.interaction) <- c("joinlab", "interacting_pair", "ligand", "CC", "pvals", "means")
####Split the interaction between ligand and receptor
a <- apply(sig.interaction, 1, function(y){
CC.interaction <- unlist(strsplit(as.character(y[4]), "\\|"))
if((y[3] == "Ligand" & CC.interaction[1] == x) | (y[3] == "Receptor" & CC.interaction[2] == x)){
return("ok")
}else{
return("no")
}
})
ligand.interactions <- sig.interaction[which(a=="ok"),]
receptor.interactions <- sig.interaction[which(a=="no"),]
sig.interaction <- sig.interaction[order(sig.interaction$means, decreasing = T),]
ligand.interactions <- ligand.interactions[order(ligand.interactions$means, decreasing = T),]
receptor.interactions <- receptor.interactions[order(receptor.interactions$means, decreasing = T),]
return(list(All = sig.interaction, Ligand = ligand.interactions, Receptor = receptor.interactions))
})
names(sig.interaction.cellType) <- cell.types
saveRDS(sig.interaction.cellType, file = "sig.interaction.cellType.rds")
a <- lapply(sig.interaction.cellType, function(x){
return(x$All)
})
library(openxlsx)
write.xlsx(a, file = "sig.interaction.cellType.xlsx", sheetName = names(sig.interaction.cellType), rowNames = F)
####----Drawing a heat map of interaction
interaction.counts <- sapply(names(sig.interaction.cellType), function(x){
interaction.pairs <- sig.interaction.cellType[[x]]$All
cellType.counts <- sapply(names(sig.interaction.cellType), function(y){
a <- t(as.data.frame(strsplit(x = as.character(interaction.pairs$CC), split = "\\|")))
idx1 <- which(a[,1]==y)
idx2 <- which(a[,2]==y)
return(length(unique(c(idx1, idx2))))
})
idx <- which(cellType.counts == max(cellType.counts))
self.pairs <- length(which(interaction.pairs$CC == paste0(x, "|", x)))
cellType.counts[idx] <- self.pairs
return(cellType.counts)
})
saveRDS(interaction.counts, file = "sig.interaction.counts.rds")
pdf("sig.interaction.number.heatmap.pdf")
col_fun <- c("#124F8B", "#FED9B8", "#8B0B50")
Heatmap(as.matrix(interaction.counts), name = "number of interactions", col = col_fun, row_names_gp = gpar(fontsize = 10), column_names_gp = gpar(fontsize = 10), width = unit(8, "cm"), height = unit(8, "cm"))
Heatmap(log2(as.matrix(interaction.counts)), name = "number of interactions", col = col_fun, row_names_gp = gpar(fontsize = 10), column_names_gp = gpar(fontsize = 10), width = unit(8, "cm"), height = unit(8, "cm"))
#只提取immune cell
idx <- which(rownames(interaction.counts) %in% c("Endothelium VCAM1-", "Endothelium VCAM1+", "Mesangial cell"))
Heatmap(as.matrix(interaction.counts[-idx, -idx]), name = "number of interactions", col = col_fun, row_names_gp = gpar(fontsize = 10), column_names_gp = gpar(fontsize = 10), width = unit(8, "cm"), height = unit(8, "cm"))
Heatmap(log2(as.matrix(interaction.counts[-idx, -idx])), name = "number of interactions", col = col_fun, row_names_gp = gpar(fontsize = 10), column_names_gp = gpar(fontsize = 10), width = unit(8, "cm"), height = unit(8, "cm"))
dev.off()
####-----count the interaction number
interaction.type.number <- sapply(sig.interaction.cellType, function(x){
return(c(nrow(x$Ligand), nrow(x$Receptor)))
})
rownames(interaction.type.number) <- c("Ligand", "Receptor")
##1.all cell types
interaction.type.number <- data.frame(interaction.type.number, check.names = F)
interaction.type.number$Type <- c("Ligand", "Receptor")
library(tidyr)
res <- gather(interaction.type.number, cellType, count, -Type)
saveRDS(res, file = "Ligand.Receptor.interaction.rds")
res$cellType <- factor(res$cellType, levels = order.value)
res.ligand <- res[which(res$Type == "Ligand"),]
res.receptor <- res[which(res$Type == "Receptor"),]
type <- rep("Lymphoid", nrow(res.ligand))
type[c(1, 8, 13:16, 19)] <- "Myeloid"
type[10] <- "Tumor"
type[c(4, 6, 12)] <- "Other"
res.ligand$type <- factor(type, levels = c("Lymphoid", "Myeloid", "Tumor", "Other"))
res.receptor$type <- factor(type, levels = c("Lymphoid", "Myeloid", "Tumor", "Other"))
pdf("Ligand.Receptor.interaction.pdf")
ggbarplot(res, x="cellType", y="count", color = "Type", xlab = "", ylab = "Number of interactions", fill = "Type", palette = c("#E18727", "#0072B5"), x.text.angle = 60, position = position_dodge())
ggbarplot(res.ligand, x="cellType", y="count", color = "type", xlab = "", ylab = "Number of interactions", fill = "type", palette = colors, sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
ggbarplot(res.receptor, x="cellType", y="count", color = "type", xlab = "", ylab = "Number of interactions", fill = "type", palette = colors, sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
#2.focus on the immune cell
other <- c("Endothelium VCAM1-", "Endothelium VCAM1+", "Mesangial cell", "Tumor")
index1 <- which(res$cellType %in% other)
res.immune <- res[-index1,]
ggbarplot(res.immune, x="cellType", y="count", color = "Type", xlab = "", ylab = "Number of interactions", fill = "Type", palette = c("#E18727", "#0072B5"), x.text.angle = 60, position = position_dodge())
index1 <- which(res.ligand$cellType %in% other)
ggbarplot(res.ligand[-index1,], x="cellType", y="count", color = "type", xlab = "", ylab = "Number of interactions", fill = "type", palette = colors, sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
ggbarplot(res.receptor[-index1,], x="cellType", y="count", color = "type", xlab = "", ylab = "Number of interactions", fill = "type", palette = colors, sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
# heatmap展示ligand和receptor情况
ligand.receptor.data <- data.frame(Ligand = res.ligand[,3], Receptor = res.receptor[,3])
rownames(ligand.receptor.data) <- res.ligand$cellType
row_split <- res.ligand$type
Heatmap(ligand.receptor.data, name = "Number of Interaction", col = colorRamp2(c(0,1200), c("white", "red")), show_row_dend = F, show_column_dend = F, row_split = row_split,
width = unit(2, "cm"), height = unit(10, "cm"), cell_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.0f", ligand.receptor.data[i, j]), x, y, gp = gpar(fontsize = 7))}
)
dev.off()
# heatmap shows the conditions of ligand and receptor
All.interaction.number <- sapply(sig.interaction.cellType, function(x){
return(nrow(x$All))
})
All.interaction.number <- data.frame(cellType = names(All.interaction.number), interaction.num = All.interaction.number)
class.type <- rep("Lymphoid", nrow(All.interaction.number))
class.type[c(1, 8, 13:16, 19)] <- "Myeloid"
class.type[which(All.interaction.number$cellType %in% c("Endothelium VCAM1+", "Endothelium VCAM1-", "Mesangial cell"))] <- "Other"
class.type[which(All.interaction.number$cellType %in% c("Tumor"))] <- "Tumor"
All.interaction.number$class <- factor(class.type, levels = c("Lymphoid", "Myeloid", "Tumor", "Other"))
pdf("sig.interaction.number.pdf")
ggbarplot(All.interaction.number, x="cellType", y="interaction.num", xlab = "", ylab = "Number of interactions", fill = "class", color = "white", palette = colors,sort.val = "desc",sort.by.groups = FALSE,x.text.angle = 60)
dev.off()
saveRDS(All.interaction.number, "All.interaction.number.rds")
#### Prepare circular plots for all cell types
track.matrix <- matrix(c(rep(0, nrow(All.interaction.number)), All.interaction.number$interaction.num), ncol = 2)
rownames(track.matrix) <- All.interaction.number[,1]
track.matrix <- track.matrix[order.value,]
#function --- plot circular
plot.circular <- function(track.matrix, gene.pair, mypvals, mymeans, data.merge = data.merge, idx = c(1, 3:10, 12), means.threshold = 1, pval.threshold = 0.01, risk.table = T, High.low = F, colors = c("#D95319", "#F39B7F", "#3B6793","#4285F4")){
gene.a <- gene.pair[1]
gene.b <- gene.pair[2]
mymeans %>% dplyr::filter(gene_a == gene.a & gene_b == gene.b) %>% reshape2::melt() -> meansdf
meansdf <- meansdf[, -idx]
colnames(meansdf)<- c("interacting_pair", "ligand", "CC","means")
mypvals %>% dplyr::filter(gene_a == gene.a & gene_b == gene.b) %>% reshape2::melt() -> pvalsdf
pvalsdf <- pvalsdf[, -idx]
colnames(pvalsdf)<- c("interacting_pair", "ligand", "CC","means")
pvalsdf$joinlab<- paste0(pvalsdf$interacting_pair, "_", pvalsdf$CC)
meansdf$joinlab<- paste0(meansdf$interacting_pair, "_", meansdf$CC)
pldf <- merge(pvalsdf, meansdf, by = "joinlab")
pldf <- pldf[,-c(1,6:8)]
colnames(pldf) <- c("interacting_pair", "ligand", "CC", "pvals", "means")
sig.interaction <- pldf%>% filter(means >= means.threshold & pvals < pval.threshold)
interaction.matrix <- apply(sig.interaction, 1, function(x){
if(x[2] == "Receptor"){
a <- unlist(strsplit(x[3], "\\|"))
b <- c(a[2], a[1], x[5])
}else{
a <- unlist(strsplit(x[3], "\\|"))
b <- c(a[1], a[2], x[5])
}
return(b)
})
interaction.matrix <- as.data.frame(t(interaction.matrix))
interaction.matrix$means <- as.numeric(interaction.matrix$means)
p <- Plot.CircularChart(track.matrix = track.matrix, interaction.matrix = interaction.matrix,
bg.col = NULL, cex = 0.8,
link.col = NULL, arr.lwd = 0.3)
print(p)
survival.res <- analysis.diff.survival.TCGA(interest.gene = c(gene.a, gene.b), diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, Box.plot = T, main = paste0(gene.a, "-", gene.b), meta.signature = F)
combined.res <- survival.combined(geneA = gene.a, geneB = gene.b, clin.data = clin.data, DESeq2.result = DESeq2.result, DESeq2.normalized_counts = DESeq2.normalized_counts, risk.table = risk.table, High.low = High.low, colors = colors)
p <- FeaturePlot(data.merge, features = gene.a, cols = c("lightgrey", "red"))
print(p)
p <- FeaturePlot(data.merge, features = gene.b, cols = c("lightgrey", "red"))
print(p)
p <- VlnPlot(data.merge, features = gene.a, pt.size = 0.5) + NoLegend()
print(p)
p <- VlnPlot(data.merge, features = gene.b, pt.size = 0.5) + NoLegend()
print(p)
return(interaction.matrix)
}
#########################################################analysis tumor cell################################################
tumor <- sig.interaction.cellType[["Tumor"]]
#Statistics and tumor interaction cell type distribution
#ligand
ligand.interact.tumor <- apply(tumor$Ligand, 1, function(x){
a <- unlist(strsplit(x[4], "\\|"))
return(a)
})
ligand.interact.tumor.freq <- data.frame(table(as.character(ligand.interact.tumor)))
idx <- which(ligand.interact.tumor.freq$Var1 == "Tumor")
ligand.interact.tumor.freq[idx, 2] <- ligand.interact.tumor.freq[idx, 2]-nrow(tumor$Ligand)
receptor.interact.tumor <- apply(tumor$Receptor, 1, function(x){
a <- unlist(strsplit(x[4], "\\|"))
return(a)
})
receptor.interact.tumor.freq <- data.frame(table(as.character(receptor.interact.tumor)))
idx <- which(receptor.interact.tumor.freq$Var1 == "Tumor")
receptor.interact.tumor.freq[idx, 2] <- receptor.interact.tumor.freq[idx, 2]-nrow(tumor$Receptor)
type <- rep("Lymphoid", nrow(receptor.interact.tumor.freq))
type[c(7,10,12:13,16:18)] <- "Myeloid"
type[20] <- "Tumor"
type[c(8:9, 11)] <- "Other"
receptor.interact.tumor.freq$Type <- factor(type, levels = c("Lymphoid", "Myeloid", "Tumor", "Other"))
ligand.interact.tumor.freq$Type <- factor(type, levels = c("Lymphoid", "Myeloid", "Tumor", "Other"))
ligand.interact.tumor.freq$Var1 <- factor(ligand.interact.tumor.freq$Var1, levels = order.value)
receptor.interact.tumor.freq$Var1 <- factor(receptor.interact.tumor.freq$Var1, levels = order.value)
pdf("Tumor/tumor.ligand.receptor.pdf")
ggbarplot(ligand.interact.tumor.freq, x="Var1", y="Freq", color = "Type", xlab = "", palette = colors, ylab = "Number of Ligand", fill = "Type", sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
ggbarplot(receptor.interact.tumor.freq, x="Var1", y="Freq", color = "Type", xlab = "", palette = colors, ylab = "Number of Receptor", fill = "Type", sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
ggbarplot(ligand.interact.tumor.freq[-c(8,9,11),], x="Var1", y="Freq", color = "Type", xlab = "", palette = colors[1:3], ylab = "Number of Ligand", fill = "Type", sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
ggbarplot(receptor.interact.tumor.freq[-c(8,9,11),], x="Var1", y="Freq", color = "Type", xlab = "", palette = colors[1:3], ylab = "Number of Receptor", fill = "Type", sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
ligand.receptor.data <- data.frame(Ligand = ligand.interact.tumor.freq[,2], Receptor = receptor.interact.tumor.freq[,2])
rownames(ligand.receptor.data) <- ligand.interact.tumor.freq$Var1
row_split <- factor(ligand.interact.tumor.freq$Type, levels = c("Lymphoid", "Myeloid", "Tumor", "Other"))
Heatmap(ligand.receptor.data, name = "Number of Interaction", col = colorRamp2(c(0,50), c("white", "red")), show_row_dend = F, show_column_dend = F, row_split = row_split,
width = unit(2, "cm"), height = unit(8, "cm"), cell_fun = function(j, i, x, y, width, height, fill) {
grid.text(sprintf("%.0f", ligand.receptor.data[i, j]), x, y, gp = gpar(fontsize = 7))}
)
# total number
total.interaction <- data.frame(cellType = rownames(ligand.receptor.data), number = ligand.receptor.data[,1]+ligand.receptor.data[,2], type = ligand.interact.tumor.freq$Type)
total.interaction$type <- factor(total.interaction$type, levels = c("Lymphoid", "Myeloid", "Tumor", "Other"))
ggbarplot(total.interaction, x="cellType", y="number", color = "type", xlab = "", palette = colors, ylab = "Number of interaction", fill = "type", sort.val = "desc", sort.by.groups = FALSE, x.text.angle = 60)
dev.off()
saveRDS(total.interaction, file = "Tumor/tumor.interaction.number.rds")
#### Interaction between cancer cells and other cells
#Screening significant interaction pairs-ligand
selected_rows <- unique(tumor$All$interacting_pair[which(tumor$All$means>=mean.threshold & tumor$All$pvals<pval.threshold)])
selected_columns <- sort(unique(as.character(tumor$All$CC)))
pdf("Tumor/tumor.sig.interaction.pdf")
p1 <- dot_plot(selected_rows = selected_rows, selected_columns = selected_columns,
breaks = c(-2, -1, 0, 1, 2), limit = c(-2, 2), legend.key.size = unit(0.1, "inches"),
size = 8, max.dot.size = 3, means_path = "Renal/mymeans.usr.txt", pvalues_path = "Renal/mypvals.usr.txt")
print(p1)
dev.off()
pdf("Tumor/VEGFA.expression.pdf", width = 3, height = 3)
p <- DotPlot(data.merge.new, features = c("VEGFA", "NRP1", "KDR", "GPC1"), cols = c("#1e90ff", "#F15F30"), dot.scale = 3.5) + xlab("") + ylab("") + theme(axis.text.x = element_text(size = 8, angle = 90)) + theme(axis.text.y = element_text(size = 8)) + NoLegend()
print(p)
dev.off()
pdf("Tumor/VEGFA.expression-test.pdf", width = 3, height = 3)
p <- DotPlot(data.merge.new, features = c("VEGFA", "NRP1", "KDR", "GPC1"), cols = c("#1e90ff", "#F15F30"), dot.scale = 3.5) + xlab("") + ylab("") + theme(axis.text.x = element_text(size = 8, angle = 90)) + theme(axis.text.y = element_text(size = 8))
print(p)
dev.off()
pdf("Tumor/interested.interaction.pairs.pdf")
p <- VlnPlot(data.merge.new, features = c("MIF", "CD74", "CXCR4"), pt.size = 0, ncol = 2) + NoLegend()
print(p)
p <- VlnPlot(data.merge.new, features = c("VEGFA", "NRP1", "KDR", "GPC1"), pt.size = 0, ncol = 2) + NoLegend()
print(p)
p <- FeaturePlot(data.merge, features = c("VEGFA", "NRP1", "KDR", "GPC1"), cols = c("lightgrey", "red"))
print(p)
p <- VlnPlot(data.merge.new, features = c("CXCL2", "DPP4", "CD24", "SIGLEC10"), pt.size = 0, ncol = 2)
print(p)
p <- VlnPlot(data.merge.new, features = c("APOE", "APOC1", "TREM2", "VLDLR"), pt.size = 0, ncol = 2)
print(p)
p <- VlnPlot(data.merge.new, features = c("CD70", "CD27", "CALM1", "HMMR"), pt.size = 0, ncol = 2)
print(p)
dev.off()
features <- c("MIF", "VEGFA", "GPC1", "CD24",
"DPP4", "CD70", "CALM1", "APOE", "VLDLR")
pdf("Tumor/tumor.sig.ligand.receptor.survival.pdf")
res <- analysis.diff.survival.TCGA(interest.gene = features, diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, Box.plot = T, main = "cancer.sig.ligand.receptor", meta.signature = F)
features <- c("MIF", "VEGFA", "GPC1",
"DPP4", "CD70", "CALM1", "APOE", "VLDLR")
features.list <- as.list(features)
names(features.list) <- features
cox.res <- RCC.icb.analysis(signature.list = features.list, expresionMatrix = normalized_expression, clincal.info = patient.info.RNA)
dev.off()
#### Prepare circular plots
track.matrix <- matrix(c(rep(0, nrow(total.interaction)), total.interaction$number), ncol = 2)
rownames(track.matrix) <- total.interaction[,1]
track.matrix <- track.matrix[order.value,]
###########################Tumor VS TAM
tumor_TAM <- tumor$All[grep("TAM", tumor$All$CC),]
selected_rows <- unique(tumor_TAM$interacting_pair[which(tumor_TAM$means>=mean.threshold & tumor_TAM$pvals<pval.threshold)])
# features <- as.character(unlist(strsplit(selected_rows, "_")))
# pdf("Tumor/Myeloid/tumor.sig.ligand.receptor.survival.pdf")
# res <- analysis.diff.survival.TCGA(interest.gene = features, diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, Box.plot = T, main = "Tumor.TAM", meta.signature = F)
# dev.off()
# write.csv(res,file = "Tumor/Myeloid/tumor.sig.ligand.receptor.survival.csv", row.names = F)
TAM.DEGs <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/5.Immune/Macrophage/cellType.DE.pro.rds")
Tumor.DEGs <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/2.Cluster/AnnotateCellType/cellType.sig.pos.DEGs.rds")
Tumor.DEGs <- Tumor.DEGs %>% filter(cluster == "Tumor") %>% filter(p_val_adj<0.05 & avg_log2FC>0.25)
TAM.DEGs <- TAM.DEGs %>% filter(p_val_adj<0.05 & avg_log2FC>0.25)
DEGs <- unique(c(Tumor.DEGs$gene, TAM.DEGs$gene))
interaction.genes <- unlist(str_split(selected_rows, pattern="_"))
sig.DEGs <- intersect(interaction.genes, DEGs)
interaction.info <- sapply(selected_rows, function(x){
a <- unlist(str_split(x, "_"))
first <- match(a[1], sig.DEGs)
second <- match(a[2], sig.DEGs)
if(!is.na(first)&!is.na(second)){
return("ok")
}else{
return("no")
}
})
idx <- which(interaction.info == "ok")
selected_rows <- selected_rows[idx]
a <- apply(tumor_TAM, 1, function(x){
b <- unlist(str_split(as.character(x[4]), "\\|"))
if((x[3]=="Ligand" & b[1]=="Tumor")|(x[3]=="Receptor" & b[2]=="Tumor")){
return("ok")
}else{
return("error")
}
})
selected_rows1 <- selected_rows[which(selected_rows %in% tumor_TAM$interacting_pair[which(a=="error")])]
selected_columns1 <- as.character(tumor_TAM$CC[which(tumor_TAM$interacting_pair %in% selected_rows1)])
selected_rows2 <- selected_rows[which(selected_rows %in% tumor_TAM$interacting_pair[which(a=="ok")])]
selected_columns2 <- as.character(tumor_TAM$CC[which(tumor_TAM$interacting_pair %in% selected_rows2)])
pdf("Tumor/Myeloid/tumor.TAM.interaction.receptor.pdf", width = 3.8, height = 4.2)
p1 <- dot_plot(selected_rows = selected_rows1, selected_columns = unique(selected_columns1),
breaks = c(-2, -1, 0, 1, 2), limit = c(-2, 2), legend.key.size = unit(0.1, "inches"), order.column = c("TAM-C1QB|Tumor", "TAM-RGCC|Tumor", "TAM-LGALS3|Tumor"),
size = 8, max.dot.size = 4, means_path = "Renal/mymeans.usr.txt", pvalues_path = "Renal/mypvals.usr.txt")
print(p1)
dev.off()
pdf("Tumor/Myeloid/tumor.TAM.interaction.ligand.pdf", width = 3.8, height = 4.2)
p1 <- dot_plot(selected_rows = selected_rows2, selected_columns = unique(selected_columns2),
breaks = c(-2, -1, 0, 1, 2), limit = c(-2, 2), legend.key.size = unit(0.1, "inches"), order.column = c("Tumor|TAM-C1QB", "Tumor|TAM-RGCC", "Tumor|TAM-LGALS3"),
size = 8, max.dot.size = 4, means_path = "Renal/mymeans.usr.txt", pvalues_path = "Renal/mypvals.usr.txt")
print(p1)
dev.off()
pdf("Tumor/Myeloid/SPP1.expression.pdf", width = 3, height = 3)
p <- DotPlot(data.merge.new, features = c("SPP1", "PTGER4", "ITGA9", "ITGA4"), cols = c("#1e90ff", "#F15F30"), dot.scale = 3.5) + xlab("") + ylab("") + theme(axis.text.x = element_text(size = 8, angle = 90)) + theme(axis.text.y = element_text(size = 8)) + NoLegend()
print(p)
dev.off()
pdf("Tumor/Myeloid/SPP1.expression-test.pdf", width = 3, height = 3)
p <- DotPlot(data.merge.new, features = c("SPP1", "PTGER4", "ITGA9", "ITGA4"), cols = c("#1e90ff", "#F15F30"), dot.scale = 3.5) + xlab("") + ylab("") + theme(axis.text.x = element_text(size = 8, angle = 90)) + theme(axis.text.y = element_text(size = 8))
print(p)
dev.off()
pdf("Tumor/Myeloid/interested.interaction.pairs.pdf")
p <- VlnPlot(data.merge.new, features = c("MIF", "CD74", "CD44", "SPP1"), pt.size = 0, ncol = 2) + NoLegend()
print(p)
p <- VlnPlot(data.merge.new, features = c("CD24", "SIGLEC10", "APOE", "TREM2"), pt.size = 0, ncol = 2)
print(p)
p <- VlnPlot(data.merge.new, features = c("VIM", "CD44", "RPS19", "C5AR1"), pt.size = 0, ncol = 2)
print(p)
p <- VlnPlot(data.merge.new, features = c("PKM", "CD44", "CXCL8", "SDC2"), pt.size = 0, ncol = 2)
print(p)
p <- VlnPlot(data.merge.new, features = c("FN1", "PLAUR", "CXCL8", "SDC2"), pt.size = 0, ncol = 2)
print(p)
dev.off()
features <- c("MIF", "VEGFA", "GPC1",
"DPP4", "CD70", "CALM1", "APOE", "VLDLR")
features.list <- as.list(features)
names(features.list) <- features
cox.res <- RCC.icb.analysis(signature.list = features.list, expresionMatrix = normalized_expression, clincal.info = patient.info.RNA)
dev.off()
###########################Tumor VS T cell
tumor_lymphoid <- tumor$All[grep("Proliferative T cell|Treg|Exhausted", tumor$All$CC),]
selected_rows <- unique(tumor_lymphoid$interacting_pair[which(tumor_lymphoid$means>=mean.threshold & tumor_lymphoid$pvals<pval.threshold)])
DEGs <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/5.Immune/CD8T/cellType.DE.rds")
T.DEGs <- DEGs[["Exhausted"]] %>% filter(p_val_adj<0.05 & avg_log2FC>0.25)
all.DEGs <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/2.Cluster/AnnotateCellType/cellType.sig.pos.DEGs.rds")
other.DEGs <- all.DEGs %>% filter(cluster %in% c("Proliferative T cell", "Treg", "Tumor")) %>% filter(p_val_adj<0.05 & avg_log2FC>0.25)
DEGs <- unique(c(T.DEGs$gene, other.DEGs$gene))
interaction.genes <- unlist(str_split(selected_rows, pattern="_"))
sig.DEGs <- intersect(interaction.genes, DEGs)
interaction.info <- sapply(selected_rows, function(x){
a <- unlist(str_split(x, "_"))
first <- match(a[1], sig.DEGs)
second <- match(a[2], sig.DEGs)
if(!is.na(first)&!is.na(second)){
return("ok")
}else{
return("no")
}
})
idx <- which(interaction.info == "ok")
selected_rows <- selected_rows[idx]
a <- apply(tumor_lymphoid, 1, function(x){
b <- unlist(str_split(as.character(x[4]), "\\|"))
if((x[3]=="Ligand" & b[1]=="Tumor")|(x[3]=="Receptor" & b[2]=="Tumor")){
return("ok")
}else{
return("error")
}
})
selected_rows1 <- selected_rows[which(selected_rows %in% tumor_lymphoid$interacting_pair[which(a=="error")])]
selected_columns1 <- as.character(tumor_lymphoid$CC[which(tumor_lymphoid$interacting_pair %in% selected_rows1)])
selected_rows2 <- selected_rows[which(selected_rows %in% tumor_lymphoid$interacting_pair[which(a=="ok")])]
selected_columns2 <- as.character(tumor_lymphoid$CC[which(tumor_lymphoid$interacting_pair %in% selected_rows2)])
pdf("Tumor/Lymphoid/tumor.Lymphoid.interaction.receptor.pdf", width = 3.8, height = 4)
p1 <- dot_plot(selected_rows = selected_rows1, selected_columns = unique(selected_columns1),
breaks = c(-2, -1, 0, 1, 2), limit = c(-2, 2), legend.key.size = unit(0.1, "inches"), order.column = c("CD8+ T-Exhausted|Tumor", "Proliferative T cell|Tumor", "Treg|Tumor"),
size = 8, max.dot.size = 4, means_path = "Renal/mymeans.usr.txt", pvalues_path = "Renal/mypvals.usr.txt")
print(p1)
dev.off()
pdf("Tumor/Lymphoid/tumor.Lymphoid.interaction.ligand.pdf", width = 3.65, height = 4)
p1 <- dot_plot(selected_rows = selected_rows2, selected_columns = unique(selected_columns2),
breaks = c(-2, -1, 0, 1, 2), limit = c(-2, 2), legend.key.size = unit(0.1, "inches"), order.column = c("Tumor|CD8+ T-Exhausted", "Tumor|Proliferative T cell", "Tumor|Treg"),
size = 8, max.dot.size = 4, means_path = "Renal/mymeans.usr.txt", pvalues_path = "Renal/mypvals.usr.txt")
print(p1)
dev.off()
pdf("Tumor/Lymphoid/interested.interaction.pairs.pdf")
p <- VlnPlot(data.merge.new, features = c("LTB", "LTBR", "CD27", "CD70"), pt.size = 0, ncol = 2) + NoLegend()
print(p)
dev.off()