[40a513]: / RNA-seq / AnalysisPipeline / 4.1.NMF.R

Download this file

476 lines (431 with data), 29.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#' @description: NMF analysis for tumor cell
seed.data <- 101
set.seed(seed.data)
library(NMF) #0.23.0
library(ggpubr)
library(Seurat)
library(ComplexHeatmap)
library(circlize)
library(corrplot)
library(cowplot)
library(dendsort)
library(openxlsx)
setwd(dir = "/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/4.NMF/SCT")
#### data preparation
library(future)
plan("multiprocess", workers = 5)
options(future.globals.maxSize = 50000 * 1024^2) # set 50G RAM
# Since the similarity of the cells needs to be evaluated in the overall scale expression, the overall scale needs to be performed
data.merge <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/data.merge.pro.rds")
DefaultAssay(data.merge) <- "RNA"
CancerCell <- subset(data.merge, subset = cellType_low == "Tumor")
source(file = "/data/active_data/lzl/RenalTumor-20200713/code/Filter.gene.R")
CancerCell <- Filter.gene(CancerCell) #Remove genes less than 3 cells expressed
# scale.data: do.scale = T, do.centre = T
CancerCell <- SCTransform(CancerCell, vars.to.regress = c("nCount_RNA", "percent.mt"), return.only.var.genes = F, verbose = FALSE)
saveRDS(CancerCell, file = "CancerCell.rds")
stallion = c("1"="#EF7F48","2"="#D69100","3"="#C69900","4"="#83AD00","5"="#00BE6B", "6"="#00C0BA","7"="#00B9E1","8"="#00B3F1","19"="#E6C2DC", "10"="#8794FF", "11"="#B086FF","12"="#E46DF6","13"="#F365E6","14"="#D24B27","15"="#3BBCA8", "16"="#6E4B9E","17"="#0C727C", "18"="#7E1416","9"="#00ABFD","20"="#3D3D3D")
## NMF, only analyze the cancer cell cluster, calculate in a single sample
## NMF requires that the input data has been standardized
DefaultAssay(data.merge) <- "RNA"
T1.cancer.data <- subset(data.merge, subset = cellType_low == "Tumor" & orig.ident == "T1") # 606 cells
T1.cancer.data <- SCTransform(T1.cancer.data, vars.to.regress = c("nCount_RNA", "percent.mt"), return.only.var.genes = F, verbose = FALSE)
T2.cancer.data <- subset(data.merge, subset = cellType_low == "Tumor" & orig.ident == "T2") # 2382 cells
T2.cancer.data <- SCTransform(T2.cancer.data, vars.to.regress = c("nCount_RNA", "percent.mt"), return.only.var.genes = F, verbose = FALSE)
T3.cancer.data <- subset(data.merge, subset = cellType_low == "Tumor" & orig.ident == "T3") # 320 cells
T3.cancer.data <- SCTransform(T3.cancer.data, vars.to.regress = c("nCount_RNA", "percent.mt"), return.only.var.genes = F, verbose = FALSE)
T4.cancer.data <- subset(data.merge, subset = cellType_low == "Tumor" & orig.ident == "T4") # 256 cells
T4.cancer.data <- SCTransform(T4.cancer.data, vars.to.regress = c("nCount_RNA", "percent.mt"), return.only.var.genes = F, verbose = FALSE)
saveRDS(T1.cancer.data, file = "T1.cancer.data.rds")
saveRDS(T2.cancer.data, file = "T2.cancer.data.rds")
saveRDS(T3.cancer.data, file = "T3.cancer.data.rds")
saveRDS(T4.cancer.data, file = "T4.cancer.data.rds")
#######################################################1.NMF calculate###################################################
T1.cancer.data <- readRDS("T1.cancer.data.rds") # 14896*606
T2.cancer.data <- readRDS("T2.cancer.data.rds") # 17153*2382
T3.cancer.data <- readRDS("T3.cancer.data.rds") # 14685*320
T4.cancer.data <- readRDS("T4.cancer.data.rds") # 12468*256
# Convert the negative value in the scale.data data to a value of 0, and it is required to have expression in at least 10 cells
Filter.gene <- function(data, min.cell = 10){
exp.num <- apply(data, 1, function(x){
return(length(which(x>0)))
})
data <- data[which(exp.num>=min.cell),]
return(data)
}
T1.cancer.scale.data <- GetAssayData(T1.cancer.data, slot = "scale.data")
T1.cancer.scale.data[which(T1.cancer.scale.data < 0)] <- 0
T1.cancer.scale.data <- Filter.gene(T1.cancer.scale.data) # 14634*606
T2.cancer.scale.data <- GetAssayData(T2.cancer.data, slot = "scale.data")
T2.cancer.scale.data[which(T2.cancer.scale.data < 0)] <- 0
T2.cancer.scale.data <- Filter.gene(T2.cancer.scale.data) # 16831*2382
T3.cancer.scale.data <- GetAssayData(T3.cancer.data, slot = "scale.data")
T3.cancer.scale.data[which(T3.cancer.scale.data < 0)] <- 0
T3.cancer.scale.data <- Filter.gene(T3.cancer.scale.data) # 14390*320
T4.cancer.scale.data <- GetAssayData(T4.cancer.data, slot = "scale.data")
T4.cancer.scale.data[which(T4.cancer.scale.data < 0)] <- 0
T4.cancer.scale.data <- Filter.gene(T4.cancer.scale.data) # 12042*256
####stardard vatiation analysis
T1.sd <- apply(T1.cancer.scale.data, 1, sd)
T2.sd <- apply(T2.cancer.scale.data, 1, sd)
T3.sd <- apply(T3.cancer.scale.data, 1, sd)
T4.sd <- apply(T4.cancer.scale.data, 1, sd)
sd.data <- data.frame(Sample = c(rep("T1", length(T1.sd)), rep("T2", length(T2.sd)),rep("T3", length(T3.sd)), rep("T4", length(T4.sd))),
sd = c(T1.sd, T2.sd, T3.sd, T4.sd))
pdf("SD/sample.sd.distribution.pdf")
ggdensity(sd.data, x="sd", rug = TRUE, color = "Sample", fill = "Sample", palette = "npg") + geom_vline(xintercept = 0.5)
dev.off()
T1.cancer.scale.data.pro <- T1.cancer.scale.data[names(T1.sd)[which(T1.sd >= 0.5)],]
T2.cancer.scale.data.pro <- T2.cancer.scale.data[names(T2.sd)[which(T2.sd >= 0.5)],]
T3.cancer.scale.data.pro <- T3.cancer.scale.data[names(T3.sd)[which(T3.sd >= 0.5)],]
T4.cancer.scale.data.pro <- T4.cancer.scale.data[names(T4.sd)[which(T4.sd >= 0.5)],]
#### Determine the best rank
T1.nmf <- nmf(T1.cancer.scale.data.pro, 2:6, seed=seed.data, nrun = 30, .options = "vP48")
T2.nmf <- nmf(T2.cancer.scale.data.pro, 2:6, seed=seed.data, nrun = 30, .options = "vP48")
T3.nmf <- nmf(T3.cancer.scale.data.pro, 2:6, seed=seed.data, nrun = 30, .options = "vP48")
T4.nmf <- nmf(T4.cancer.scale.data.pro, 2:6, seed=seed.data, nrun = 30, .options = "vP48")
saveRDS(T1.nmf, "T1.nmf.rds")
saveRDS(T2.nmf, "T2.nmf.rds")
saveRDS(T3.nmf, "T3.nmf.rds")
saveRDS(T4.nmf, "T4.nmf.rds")
pdf("patient.optiaml.rank.pdf")
plot(T1.nmf)
plot(2:6,T1.nmf$measures$cophenetic, type="b", col="purple")
plot(T2.nmf)
plot(2:6,T2.nmf$measures$cophenetic, type="b", col="purple")
plot(T3.nmf)
plot(2:6,T3.nmf$measures$cophenetic, type="b", col="purple")
plot(T4.nmf)
plot(2:6,T4.nmf$measures$cophenetic, type="b", col="purple")
dev.off()
# function: Determine the best rank
optimal.rank <- function(nmf){
coph <- nmf$measures$cophenetic
coph_diff <- NULL
for (i in 2:length(coph)){
coph_diff <- c(coph_diff, coph[i-1]-coph[i])
}
k.best <- which.max(coph_diff)+1
return(k.best)
}
optimal.rank(T1.nmf)
optimal.rank(T2.nmf)
optimal.rank(T3.nmf)
optimal.rank(T4.nmf)
#optimal rank
T1.nmf.optimal <- nmf(T1.cancer.scale.data.pro, optimal.rank(T1.nmf), nrun = 30, seed=seed.data, .options = "vP48")
T2.nmf.optimal <- nmf(T2.cancer.scale.data.pro, optimal.rank(T2.nmf), nrun = 30, seed=seed.data, .options = "vP48")
T3.nmf.optimal <- nmf(T3.cancer.scale.data.pro, optimal.rank(T3.nmf), nrun = 30, seed=seed.data, .options = "vP48")
T4.nmf.optimal <- nmf(T4.cancer.scale.data.pro, optimal.rank(T4.nmf), nrun = 30, seed=seed.data, .options = "vP48")
pdf("nmf.map.pdf")
coefmap(T1.nmf.optimal)
basismap(T1.nmf.optimal)
consensusmap(T1.nmf.optimal)
coefmap(T2.nmf.optimal)
basismap(T2.nmf.optimal)
consensusmap(T2.nmf.optimal)
coefmap(T3.nmf.optimal)
basismap(T3.nmf.optimal)
consensusmap(T3.nmf.optimal)
coefmap(T4.nmf.optimal)
basismap(T4.nmf.optimal)
consensusmap(T4.nmf.optimal)
dev.off()
saveRDS(T1.nmf.optimal, "T1.nmf.optimal.rds")
saveRDS(T2.nmf.optimal, "T2.nmf.optimal.rds")
saveRDS(T3.nmf.optimal, "T3.nmf.optimal.rds")
saveRDS(T4.nmf.optimal, "T4.nmf.optimal.rds")
#######################################################2.NMF anlaysis###################################################
#### load data
T1.cancer.data <- readRDS("T1.cancer.data.rds")
T2.cancer.data <- readRDS("T2.cancer.data.rds")
T3.cancer.data <- readRDS("T3.cancer.data.rds")
T4.cancer.data <- readRDS("T4.cancer.data.rds")
CancerCell <- readRDS("CancerCell.rds")
setwd(paste0(getwd(), "/SD"))
T1.nmf.optimal <- readRDS("T1.nmf.optimal.rds")
T2.nmf.optimal <- readRDS("T2.nmf.optimal.rds")
T3.nmf.optimal <- readRDS("T3.nmf.optimal.rds")
T4.nmf.optimal <- readRDS("T4.nmf.optimal.rds")
# Calculate the correlation between each sample and each program
T1.w <- basis(T1.nmf.optimal)
T1.H <- coef(T1.nmf.optimal)
T2.w <- basis(T2.nmf.optimal)
T2.H <- coef(T2.nmf.optimal)
T3.w <- basis(T3.nmf.optimal)
T3.H <- coef(T3.nmf.optimal)
T4.w <- basis(T4.nmf.optimal)
T4.H <- coef(T4.nmf.optimal)
T1.basis.score <- as.numeric(T1.w)
T2.basis.score <- as.numeric(T2.w)
T3.basis.score <- as.numeric(T3.w)
T4.basis.score <- as.numeric(T4.w)
basis.score <- data.frame(patient = c(rep("T1", length(T1.basis.score)),
rep("T2", length(T2.basis.score)),
rep("T3", length(T3.basis.score)),
rep("T4", length(T4.basis.score))),
basis.score = c(T1.basis.score, T2.basis.score, T3.basis.score, T4.basis.score))
pdf("basis.score.pdf")
ggdensity(basis.score, x = "basis.score", add = "mean", rug = TRUE, color = "patient", fill = "patient")
dev.off()
#####################################################2.identify program/meta signature###################################################
#############2.1 program signature
####Extract the signature gene corresponding to each patient program
T1.program.orders <- extractFeatures(T1.nmf.optimal, 30)
T1.program.signature <- lapply(T1.program.orders, function(x){
return(rownames(T1.w)[x])
})
T2.program.orders <- extractFeatures(T2.nmf.optimal, 30)
T2.program.signature <- lapply(T2.program.orders, function(x){
return(rownames(T2.w)[x])
})
T3.program.orders <- extractFeatures(T3.nmf.optimal, 30)
T3.program.signature <- lapply(T3.program.orders, function(x){
return(rownames(T3.w)[x])
})
T4.program.orders <- extractFeatures(T4.nmf.optimal, 30)
T4.program.signature <- lapply(T4.program.orders, function(x){
return(rownames(T4.w)[x])
})
colnames(T1.w) <- paste0("T1_Program", 1:ncol(T1.w))
colnames(T2.w) <- paste0("T2_Program", 1:ncol(T2.w))
colnames(T3.w) <- paste0("T3_Program", 1:ncol(T3.w))
colnames(T4.w) <- paste0("T4_Program", 1:ncol(T4.w))
NMF.score <- list(T1 = T1.w, T2 = T2.w, T3 = T3.w, T4 = T4.w)
saveRDS(NMF.score, file = "NMF.score.rds")
T1.data.scale <- GetAssayData(T1.cancer.data, slot = "scale.data")
T2.data.scale <- GetAssayData(T2.cancer.data, slot = "scale.data")
T3.data.scale <- GetAssayData(T3.cancer.data, slot = "scale.data")
T4.data.scale <- GetAssayData(T4.cancer.data, slot = "scale.data")
pdf("program.signatures.heatmap.eachPatient.pdf")
col.list <- list(Phase = c("S" = "#3BBCA8", "G1" = "#6E4B9E", "G2M" = "#F59899"))
row.list <- list(Type = c("Program1"="#208A42", "Program2"="#7700FF","Program3"="#89288F", "Program4"="#e0598b","Program5"="#F47D2B"))
anno.info <- data.frame(Type = rep(paste0("Program", 1:length(T1.program.orders)), sapply(T1.program.orders, function(x){length(x)})))
row.anno <- HeatmapAnnotation(Type = anno.info$Type, which = "row", col = row.list)
top.anno <- HeatmapAnnotation(Phase = T1.cancer.data$Phase,
col = col.list)
p <- Heatmap(T1.data.scale[unlist(T1.program.signature),], name = "Expression", cluster_rows = F, top_annotation = top.anno, left_annotation = row.anno, show_row_dend = F, show_column_dend = F, show_row_names = F, show_column_names = F)
print(p)
anno.info <- data.frame(Type = rep(paste0("Program", 1:length(T2.program.orders)), sapply(T2.program.orders, function(x){length(x)})))
row.anno <- HeatmapAnnotation(Type = anno.info$Type, which = "row", col = row.list)
top.anno <- HeatmapAnnotation(Phase = T2.cancer.data$Phase,
col = col.list)
p <- Heatmap(T2.data.scale[unlist(T2.program.signature),], name = "Expression", cluster_rows = F, top_annotation = top.anno, left_annotation = row.anno, show_row_dend = F, show_column_dend = F, show_row_names = F, show_column_names = F)
print(p)
anno.info <- data.frame(Type = rep(paste0("Program", 1:length(T3.program.orders)), sapply(T3.program.orders, function(x){length(x)})))
row.anno <- HeatmapAnnotation(Type = anno.info$Type, which = "row", col = row.list)
top.anno <- HeatmapAnnotation(Phase = T3.cancer.data$Phase,
col = col.list)
p <- Heatmap(T3.data.scale[unlist(T3.program.signature),], name = "Expression", cluster_rows = F, top_annotation = top.anno, left_annotation = row.anno, show_row_dend = F, show_column_dend = F, show_row_names = F, show_column_names = F)
print(p)
anno.info <- data.frame(Type = rep(paste0("Program", 1:length(T4.program.orders)), sapply(T4.program.orders, function(x){length(x)})))
row.anno <- HeatmapAnnotation(Type = anno.info$Type, which = "row", col = row.list)
top.anno <- HeatmapAnnotation(Phase = T4.cancer.data$Phase,
col = col.list)
p <- Heatmap(T4.data.scale[unlist(T4.program.signature),], name = "Expression", cluster_rows = F, top_annotation = top.anno, left_annotation = row.anno, show_row_dend = F, show_column_dend = F, show_row_names = F, show_column_names = F)
print(p)
dev.off()
#####################################Calculate the correlation of each program
names(T1.program.signature) <- paste0("T1_Program", 1:length(T1.program.signature))
names(T2.program.signature) <- paste0("T2_Program", 1:length(T2.program.signature))
names(T3.program.signature) <- paste0("T3_Program", 1:length(T3.program.signature))
names(T4.program.signature) <- paste0("T4_Program", 1:length(T4.program.signature))
All.program.signature <- c(T1.program.signature, T2.program.signature, T3.program.signature, T4.program.signature)
saveRDS(All.program.signature, file = "All.program.signature.rds")
#out put list
a <- as.data.frame(All.program.signature)
write.csv(a, file = "All.program.signature.csv", row.names = F)
####Calculate the program score in the overall scale.data data and then perform correlation comparison analysis
CancerCell.four.matrix <- GetAssayData(CancerCell, slot = "scale.data")
##1. Calculate the program score of each sample across samples
CancerCell <- AddModuleScore(CancerCell, features = All.program.signature, name = paste0(names(All.program.signature), "_"))
program.score <- CancerCell@meta.data[, grep("Program", colnames(CancerCell@meta.data))]
colnames(program.score) <- gsub("_\\d+", "", colnames(program.score))
saveRDS(program.score, file = "program.score.rds")
##2. Calculation of each program score of a single sample
T1.cancer.data <- AddModuleScore(T1.cancer.data, features = All.program.signature, name = paste0(names(All.program.signature), "_"))
T1.program.score <- T1.cancer.data@meta.data[, grep("Program", colnames(T1.cancer.data@meta.data))]
colnames(T1.program.score) <- gsub("_\\d+", "", colnames(T1.program.score))
T2.cancer.data <- AddModuleScore(T2.cancer.data, features = All.program.signature, name = paste0(names(All.program.signature), "_"))
T2.program.score <- T2.cancer.data@meta.data[, grep("Program", colnames(T2.cancer.data@meta.data))]
colnames(T2.program.score) <- gsub("_\\d+", "", colnames(T2.program.score))
T3.cancer.data <- AddModuleScore(T3.cancer.data, features = All.program.signature, name = paste0(names(All.program.signature), "_"))
T3.program.score <- T3.cancer.data@meta.data[, grep("Program", colnames(T3.cancer.data@meta.data))]
colnames(T3.program.score) <- gsub("_\\d+", "", colnames(T3.program.score))
T4.cancer.data <- AddModuleScore(T4.cancer.data, features = All.program.signature, name = paste0(names(All.program.signature), "_"))
T4.program.score <- T4.cancer.data@meta.data[, grep("Program", colnames(T4.cancer.data@meta.data))]
colnames(T4.program.score) <- gsub("_\\d+", "", colnames(T4.program.score))
single.programScore <- list(T1 = T1.program.score, T2 = T2.program.score, T3 = T3.program.score, T4 = T4.program.score)
saveRDS(single.programScore, file = "single.programScore.rds")
# program score correlation analysis
pdf("program.correlation.pdf")
corrM <- cor(program.score)
corrplot(corrM, order = "hclust", col=colorRampPalette(c("blue","white","#EA4335"))(100), hclust.method = "ward.D", title = "All sample", addCoef.col = "black", number.cex = 0.75, number.font = 3, tl.col = "black", tl.cex = 0.8)
T1.corrM <- cor(T1.program.score)
corrplot(T1.corrM, order = "hclust", col=colorRampPalette(c("blue","white","#EA4335"))(100), hclust.method = "ward.D", title = "T1", addCoef.col = "black", number.cex = 0.75, number.font = 3, tl.col = "black", tl.cex = 0.8)
T2.corrM <- cor(T2.program.score)
corrplot(T2.corrM, order = "hclust", col=colorRampPalette(c("blue","white","#EA4335"))(100), hclust.method = "ward.D", title = "T2", addCoef.col = "black", number.cex = 0.75, number.font = 3, tl.col = "black", tl.cex = 0.8)
T3.corrM <- cor(T3.program.score)
corrplot(T3.corrM, order = "hclust", col=colorRampPalette(c("blue","white","#EA4335"))(100), hclust.method = "ward.D", title = "T3", addCoef.col = "black", number.cex = 0.75, number.font = 3, tl.col = "black", tl.cex = 0.8)
T4.corrM <- cor(T4.program.score)
corrplot(T4.corrM, order = "hclust", col=colorRampPalette(c("blue","white","#EA4335"))(100), hclust.method = "ward.D", title = "T4", addCoef.col = "black", number.cex = 0.75, number.font = 3, tl.col = "black", tl.cex = 0.8)
mean.corrM <- (T1.corrM+T2.corrM+T3.corrM+T4.corrM)/4
corrplot(mean.corrM, order = "hclust", col=colorRampPalette(c("blue","white","#EA4335"))(100), hclust.method = "ward.D", title = "Mean correlation", addCoef.col = "black", number.cex = 0.75, number.font = 3, tl.col = "black", tl.cex = 0.8)
dev.off()
#### Functional enrichment analysis based on these programs
source("/home/longzhilin/Analysis_Code/PathwayEnrichment/clusterProfiler.enricher.R")
pdf("program.pathway.enrichment.pdf")
res <- sapply(names(All.program.signature), function(x){
y <- All.program.signature[[x]]
res <- cluterProfiler.enricher(gene = y, geneType = "SYMBOL", db.type = "MsigDB", saveDir = paste0(getwd(),"/cluterProfiler_MsigDB_Program"),
title = x, qvalueCutoff = 0.05, pvalueCutoff = 0.05)
return(res)
})
dev.off()
############2.2 Calculate the similarity between cells
####Cell similarity
#First realize clustering through ComplexHeatmap
#Hierarchical clustering, with one minus Pearson correlation as the distance metric and Ward’s linkage
#The first way: first cluster a single sample in the overall scale matrix, obtain the sort position, and then combine
cluster.order <- sapply(c("T1_", "T2_", "T3_", "T4_"), function(x){
index <- grep(x, colnames(CancerCell.four.matrix))
patient.matrix <- CancerCell.four.matrix[,index]
corrMatrix <- (1- cor(patient.matrix, method="pearson"))
hc <- hclust(as.dist(corrMatrix), method="ward.D")
row_dend <- dendsort(hc)
return(colnames(patient.matrix)[row_dend$order])
})
cluster.order <- unlist(cluster.order)
index <- match(cluster.order, colnames(CancerCell.four.matrix))
CancerCell.four.matrix <- CancerCell.four.matrix[,index]
saveRDS(CancerCell.four.matrix, file = "CancerCell.four.matrix.rds")
cell.similarity <- cor(CancerCell.four.matrix, method="pearson")
saveRDS(cell.similarity, file = "cell.similarity.rds")
diag(cell.similarity) <- 0
diag(cell.similarity) <- max(cell.similarity)
pdf("cell.similarity.pdf")
row_split <- gsub("_\\d+", "", names(cluster.order))
column_split <- gsub("_\\d+", "", names(cluster.order))
Heatmap(cell.similarity, cluster_rows = F, border = TRUE, row_split = row_split, column_split = column_split, row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), width = unit(12, "cm"), height = unit(12, "cm"), cluster_columns = F, show_column_names = F, show_row_names = F, use_raster = T, heatmap_legend_param = list(title = "Correlation coeficient"))
dev.off()
#############2.3 Observe the similarity of each program score based on the order of cell similarity
pdf("programScore.hierarchical.clustering.pdf")
## all patient
a <- t(program.score)
index <- match(cluster.order, colnames(a))
a <- a[,index]
p1 <- Heatmap(a, cluster_rows = T, border = TRUE, row_split = 4, clustering_distance_rows = "pearson", clustering_method_rows = "ward.D", column_split = column_split, row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), cluster_columns = F, show_column_names = F, show_row_names = F, use_raster = T, width = unit(8, "cm"), height = unit(6, "cm"), row_names_gp = gpar(fontsize = 10), heatmap_legend_param = list(title = "Expression score"))
program.matrix <- matrix(0, ncol = 4, nrow = nrow(a))
colnames(program.matrix) <- c("T1", "T2", "T3", "T4")
rownames(program.matrix) <- rownames(a)
for(i in 1:nrow(a)){
x <- rownames(a)[i]
x <- gsub("_.*", "", x)
program.matrix[i, x] <- 1
}
colors = structure(c("white", "#6387C5"), names = c("0", "1"))
p2 <- Heatmap(program.matrix, col = colors, cluster_rows = F, rect_gp = gpar(col = "white", lwd = 2), border = TRUE, row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), cluster_columns = F, show_column_names = T, show_row_names = F, width = unit(1.5, "cm"), row_names_gp = gpar(fontsize = 10))
plot.list <- p1+p2
draw(plot.list, heatmap_height = unit(6, "cm"))
p1 <- Heatmap(a, cluster_rows = T, border = TRUE, row_split = 4, clustering_distance_rows = "pearson", clustering_method_rows = "ward.D", column_split = column_split, row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), cluster_columns = F, show_column_names = F, show_row_names = T, use_raster = T, width = unit(8, "cm"), height = unit(6, "cm"), row_names_gp = gpar(fontsize = 10), heatmap_legend_param = list(title = "Expression score"))
p2 <- Heatmap(program.matrix, col = colors, cluster_rows = F, rect_gp = gpar(col = "white", lwd = 2), border = TRUE, row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), cluster_columns = F, show_column_names = T, show_row_names = T, width = unit(1.5, "cm"), row_names_gp = gpar(fontsize = 10))
plot.list <- p1+p2
draw(plot.list, heatmap_height = unit(6, "cm"))
## single patient
singleScore.cluster <- function(program.score, cluster.order, row_split){
a <- t(program.score)
index <- match(cluster.order, colnames(a))
a <- a[,na.omit(index)]
p1 <- Heatmap(a, cluster_rows = T, border = TRUE, row_split = row_split, clustering_distance_rows = "pearson", clustering_method_rows = "ward.D", cluster_column = F, row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), cluster_columns = F, show_column_names = F, show_row_names = T, use_raster = T, width = unit(8, "cm"), height = unit(6, "cm"), row_names_gp = gpar(fontsize = 10), heatmap_legend_param = list(title = "Expression score"))
print(p1)
}
res <- singleScore.cluster(program.score = T1.program.score, cluster.order = cluster.order, row_split = 5)
res <- singleScore.cluster(program.score = T2.program.score, cluster.order = cluster.order, row_split = 5)
res <- singleScore.cluster(program.score = T3.program.score, cluster.order = cluster.order, row_split = 5)
res <- singleScore.cluster(program.score = T4.program.score, cluster.order = cluster.order, row_split = 5)
Heatmap(mean.corrM, cluster_rows = T, cluster_columns = T, border = TRUE, row_split = 5, column_split = 5, row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), show_column_names = T, show_row_names = T, use_raster = T, width = unit(6, "cm"), height = unit(6, "cm"), row_names_gp = gpar(fontsize = 10), column_names_gp = gpar(fontsize = 10), heatmap_legend_param = list(title = "Mean correlation"))
Heatmap(mean.corrM, cluster_rows = T, cluster_columns = T, clustering_distance_rows = "pearson", clustering_method_rows = "ward.D", clustering_distance_columns = "pearson", clustering_method_columns = "ward.D", border = TRUE, row_split = 5, column_split = 5, row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), show_column_names = T, show_row_names = T, use_raster = T, width = unit(6, "cm"), height = unit(6, "cm"), row_names_gp = gpar(fontsize = 10), column_names_gp = gpar(fontsize = 10), heatmap_legend_param = list(title = "Mean correlation"))
dev.off()
###############2.4 Build metaProgram
#ref:Resolving medulloblastoma cellular architecture by single-cell genomics. 2019 Nature
All.program.signature <- readRDS("All.program.signature.rds")
metaProgram1 <- c("T2_Program2", "T1_Program1", "T3_Program1", "T4_Program1")
metaProgram2 <- c("T4_Program2", "T2_Program1", "T3_Program3")
#metaProgram3 <- c("T2_Program3", "T3_Program2")
#' @note function --- metaProgram signature gene
#average NMF score top30 gene as the signature
getMetaSignature <- function(NMF.score, program.set){
# first step:extract NMF score with correlated program
patient.info <- gsub("_.*", "", program.set)
program.nmf.score <- lapply(1:length(patient.info), function(x){
nmf.score <- NMF.score[[patient.info[x]]] # focus patient
nmf.score <- nmf.score[, program.set[x]] # focus program
nmf.score <- data.frame(gene = names(nmf.score), score = as.numeric(nmf.score))
return(nmf.score)
})
program.nmf.score.merge <- Reduce(function(x,y) merge(x, y, by="gene", all.x=TRUE, all.y=TRUE), program.nmf.score)
colnames(program.nmf.score.merge) <- c("gene", program.set)
# second step: calculate average score
avg.score <- apply(program.nmf.score.merge, 1, function(x){
return(sum(na.omit(as.numeric(x[-1])))/length(program.set))
})
program.nmf.score.merge$avgScore <- avg.score
program.nmf.score.merge <- program.nmf.score.merge[order(program.nmf.score.merge$avgScore, decreasing = T), ]
return(program.nmf.score.merge$gene[1:30])
}
meta.signature1 <- getMetaSignature(program.set = metaProgram1, NMF.score = NMF.score)
meta.signature2 <- getMetaSignature(program.set = metaProgram2, NMF.score = NMF.score)
meta.Signature <- list(metaProgram1 = meta.signature1,
metaProgram2 = meta.signature2)
a <- as.data.frame(meta.Signature)
write.csv(a, file = "meta.Signature.csv", row.names = F)
saveRDS(meta.Signature, file = "meta.Signature.rds")
##Functional enrichment analysis
source("/home/longzhilin/Analysis_Code/PathwayEnrichment/clusterProfiler.enricher.R")
pdf("MetaProgram.pathway.enrichment.pdf")
res <- sapply(1:length(meta.Signature), function(x){
y <- meta.Signature[[x]]
res <- cluterProfiler.enricher(gene = y, geneType = "SYMBOL", db.type = "MsigDB", saveDir = paste0(getwd(), "/cluterProfiler_MsigDB_MetaProgram"),
title = x, qvalueCutoff = 0.05, pvalueCutoff = 0.05, showCategory = 10)
return(res)
})
dev.off()
Expression.matrix <- CancerCell.four.matrix
meta.genes <- unlist(meta.Signature[c(1:length(meta.Signature))]) #meta gene signature
exp.matrix <- Expression.matrix[meta.genes,]
row_split <- rep(names(meta.Signature)[c(1:length(meta.Signature))],each=30)
column_split <- gsub("_.+", "", colnames(CancerCell.four.matrix))
pdf("MetaSignature.Expression.pdf")
Heatmap(exp.matrix, cluster_rows = T, cluster_columns = T, row_split = row_split, column_split = column_split, width = 12, height = 10, show_column_dend = F, show_row_dend = F, show_column_names = F, show_row_names = F, use_raster = T, row_names_gp = gpar(fontsize = 10), heatmap_legend_param = list(title = "Relative expression"))
Heatmap(exp.matrix, cluster_rows = T, cluster_columns = T, row_split = row_split, column_split = column_split, width = 12, height = 10, show_column_dend = F, show_row_dend = F, show_column_names = F, show_row_names = T, use_raster = T, row_names_gp = gpar(fontsize = 10), heatmap_legend_param = list(title = "Relative expression"))
dev.off()
##Analyze the correlation between the two meatPrograms
#Based on the original strategy for programScore, --- mainly consider this,
CancerCell <- AddModuleScore(CancerCell, features = meta.Signature, name =paste0(names(meta.Signature), "_"))
metaSignature.score <- CancerCell@meta.data[, grep("metaProgram", colnames(CancerCell@meta.data))]
colnames(metaSignature.score) <- gsub("_\\d+", "", colnames(metaSignature.score))
metaSignature.score$orig.ident <- CancerCell@meta.data$orig.ident
saveRDS(metaSignature.score, file = "metaSignature.score.rds")
saveRDS(CancerCell, file = "CancerCell.pro.rds")
cell.group <- apply(metaSignature.score[,1:ncol(metaSignature.score)], 1, function(x){
idx <- which(x == max(x))
return(idx)
})
cell.group <- gsub(1, "metaProgram1", cell.group)
cell.group <- gsub(2, "metaProgram2", cell.group)
CancerCell$program.group <- cell.group
pdf("program.group.pdf")
DimPlot(CancerCell, group.by = "program.group")
ggscatter(metaSignature.score, x = "metaProgram1", y = "metaProgram2", add = "reg.line", cor.coef = T)
ggscatter(metaSignature.score, x = "metaProgram1", y = "metaProgram2", color = "orig.ident", add = "reg.line", cor.coef = T)
dev.off()
#############2.8 TCGA survival
source(file = "/home/longzhilin/Analysis_Code/code/analysis.diff.survival.TCGA.R")
DESeq2.normalized_counts <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/DESeq2.normalized_counts.rds")
DESeq2.normalized_counts <- log2(DESeq2.normalized_counts+1)
DESeq2.result <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/DESeq2.result.rds")
clin.data <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/clin.data.rds")
pdf("meta.signature.survival.pdf")
Metabolic.TCGA <- analysis.diff.survival.TCGA(interest.gene = meta.Signature$metaProgram1, diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, main = "Meta program1", Box.plot = F, meta.signature = T, single.signature = F)
Immune.TCGA <- analysis.diff.survival.TCGA(interest.gene = meta.Signature$metaProgram2, diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, main = "Meta program2", Box.plot = F, meta.signature = T, single.signature = F)
dev.off()