[40a513]: / ATAC / AnalysisPipeline / ExtraDataAnalysis.R

Download this file

359 lines (318 with data), 20.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#' @description: analyisis extra data
library(Seurat)
library(harmony)
library(clustree)
library(ggpubr)
library(dplyr)
library(patchwork)
library(vegan)
set.seed(101)
library(future)
library(ComplexHeatmap)
library(circlize)
library(corrplot)
library(cowplot)
library(openxlsx)
plan("multiprocess", workers = 10)
options(future.globals.maxSize = 100000 * 1024^2) # set 50G RAM
setwd("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC/7.TF.analysis/ExtraData")
tumor.TFs <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC/5.Motif/Analysis/tumor.specific.TFs.rds")
four.TFs <- c("HOXC5", "VENTX", "ISL1", "OTP")
target.genes.list <- lapply(four.TFs, function(x){
targets <- read.xlsx(paste0("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC/7.TF.analysis/targets/", x, "_targetGenes.xlsx"))
targets <- unique(targets$to)
return(targets)
})
names(target.genes.list) <- four.TFs
target.genes.list$AllTFs <- tumor.TFs$Name
TF.names <- names(target.genes.list)
############################################1.Young_2018_Science###############################################
Young.Science.proj.QC <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/Young_2018_Science_scRNA_kidney/Young.Science.proj.QC.rds")
# 72501 cells
#### extract RCC tumor
RCC.object <- subset(Young.Science.proj.QC, subset = PatientDiseaseState %in% c("RCC", "VHL_RCC"))
# remove RCC3 samples
RCC.source <- unique(RCC.object$Source[grep("RCC1|RCC2|VHL", RCC.object$Source)])
RCC.object <- subset(RCC.object, subset = Source %in% RCC.source) # 30815 cells
# mapping the celltype
cellType <- unique(setdiff(RCC.object$Cell_type1, c(NA, "Junk", "MNP PapRCC", "Wilms_tumour", "Wilms_tumour_and_fibroblast", "Private")))
RCC.object <- subset(RCC.object, subset = Cell_type1 %in% cellType)
cellType <- RCC.object$Cell_type1
cellType <- gsub("NK cell 1", "NK cell", cellType)
cellType <- gsub("NK cell 2", "NK cell", cellType)
cellType <- gsub("Proliferating NK cell", "NK cell", cellType)
cellType[which(cellType %in% c("MNP1-like", "MNP2-like"))] <- "Mononuclear phagocyte-like"
cellType[which(cellType %in% c("MNP RCC2", "MNP RCC1", "MNP1", "MNP2", "MNP3"))] <- "Mononuclear phagocyte"
cellType <- gsub("T regulatory", "Treg", cellType)
cellType <- gsub("Mesangial cells", "Mesangial cell", cellType)
cellType <- gsub("Renal_cell_carcinoma", "Tumor", cellType)
cellType <- gsub("Plasmacytoid DC", "Plasmacytoid dendritic cell", cellType)
RCC.object <- AddMetaData(RCC.object, cellType, "cellType")
# re-assign sub cell type
extra.cellType <- c("Normal_cell")
for(i in extra.cellType){
idx <- which(RCC.object$cellType == i)
index1 <- which(RCC.object$Cell_type2[idx] != "-")
if(length(index1)>0){
RCC.object$cellType[idx][index1] <- RCC.object$Cell_type2[idx][index1]
RCC.object$cellType[idx][index1] <- gsub("_", " ", RCC.object$cellType[idx][index1])
}
}
RCC.object$cellType <- gsub("_", " ", RCC.object$cellType)
# remove normal cell , Junk and smaller population with less than 50 cells
cell.Type <- unique(setdiff(RCC.object$cellType, c("Normal cell", "Ureter others", "Erythroblast")))
RCC.object <- subset(RCC.object, subset = cellType %in% cell.Type)
# extract tumor region
RCC.object.tumor <- subset(RCC.object, subset = Category %in% c("Kidney_tumour", "Kidney_tumour_immune"))
RCC.object.tumor <- NormalizeData(RCC.object.tumor, verbose = FALSE) # 14681 cells
pdf("Young.Science.2018.ccRCCRegion.tumorTF.expression.pdf")
DotPlot(RCC.object.tumor, cols = c("#1e90ff", "#ff5a36"), features = tumor.TFs$Name, group.by = "cellType", dot.scale = 4) + theme(axis.text.x = element_text(size = 8, angle = 90, hjust = 1, vjust = 0.5), axis.text.y = element_text(size = 8))
dev.off()
pdf("Young.Science.2018.ccRCCRegion.FourTF.expression.pdf", width = 5)
DotPlot(RCC.object.tumor, cols = c("#1e90ff", "#ff5a36"), features = four.TFs, group.by = "cellType", dot.scale = 4) + RotatedAxis() + theme(axis.text.x = element_text(size = 8), axis.text.y = element_text(size = 8))
dev.off()
RCC.object.tumor <- AddModuleScore(RCC.object.tumor, features = target.genes.list, name = TF.names)
colnames(RCC.object.tumor@meta.data)[(ncol(RCC.object.tumor@meta.data)-4):ncol(RCC.object.tumor@meta.data)] <- paste0(TF.names, "_targets")
RCC.object.tumor$cellType <- factor(RCC.object.tumor$cellType, levels = c(setdiff(names(table(RCC.object.tumor$cellType)), "Tumor"), "Tumor"))
signature.scores <- RCC.object.tumor@meta.data
pdf("Young.Science.2018.ccRCCRegion.targetScore.pdf", height = 4)
p <- lapply(TF.names, function(x){
p <- ggviolin(signature.scores, y=paste0(x, '_targets'), x='cellType', pt.size=0, fill = 'cellType', add = "mean_sd", error.plot = "crossbar") +
xlab('') + ylab(paste0(x, ' target score')) + ggtitle('') +
theme(plot.margin = unit(c(0, 0, 0, 0.1), "in"), axis.title.y=element_text(face='bold'), axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
NoLegend() + stat_compare_means(ref.group = "Tumor", label = "p.signif")
print(p)
return(p)
})
dev.off()
############################################2.Bi.CancerCell.2021###############################################
Bi.CancerCell.2021 <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/Bi_2021_CancerCell_scRNA_ccRCC/ICB.ccRCC.rds")
Bi.CancerCell.2021 <- subset(Bi.CancerCell.2021, subset = disease__ontology_label == "clear cell renal carcinoma")
# merge cell type
cellType <- Bi.CancerCell.2021$FinalCellType
cellType <- gsub("41BB-Hi CD8\\+ T cell|41BB-Lo CD8\\+ T cell|Cycling CD8\\+ T cell|MitoHigh CD8\\+ T cell|MX1-Hi CD8\\+ T cell", "CD8+ T cell", cellType)
cellType <- gsub("CD16- Monocyte|CD16\\+ Monocyte", "Monocyte", cellType)
cellType <- gsub("CD1C\\+ DC|CLEC9A\\+ DC", "Dendritic cell", cellType)
cellType <- gsub("CXCL10-Hi TAM|Cycling TAM|FOLR2-Hi TAM|GPNMB-Hi TAM|VSIR-Hi TAM", "TAM", cellType)
cellType <- gsub("Memory T-Helper|MitoHigh T-Helper|Effector T-Helper", "T-Helper", cellType)
cellType <- gsub("FGFBP2\\- NK|FGFBP2\\+ NK|MitoHigh NK", "NK", cellType)
cellType <- gsub("TP1|TP2|Cycling Tumor", "Tumor", cellType)
Bi.CancerCell.2021 <- AddMetaData(Bi.CancerCell.2021, cellType, "cellType")
cell.Type <- setdiff(unique(Bi.CancerCell.2021$cellType), c("Misc/Undetermined")) # 31599 cells
Bi.CancerCell.2021 <- subset(Bi.CancerCell.2021, subset = cellType %in% cell.Type)
pdf("Bi.CancerCell.2021.Four.TF.expression.pdf", width = 5)
DotPlot(Bi.CancerCell.2021, cols = c("#1e90ff", "#ff5a36"), features = four.TFs, group.by = "cellType", dot.scale = 4) + RotatedAxis() + theme(axis.text.x = element_text(size = 8)) + theme(axis.text.y = element_text(size = 8))
dev.off()
pdf("Bi.CancerCell.2021.tumor.TF.expression.pdf")
DotPlot(Bi.CancerCell.2021, cols = c("#1e90ff", "#ff5a36"), features = tumor.TFs$Name, group.by = "cellType", dot.scale = 4) + theme(axis.text.x = element_text(size = 8, angle = 90, hjust = 1, vjust = 0.5)) + theme(axis.text.y = element_text(size = 8))
dev.off()
Bi.CancerCell.2021 <- AddModuleScore(Bi.CancerCell.2021, target.genes.list, name = TF.names)
colnames(Bi.CancerCell.2021@meta.data)[(ncol(Bi.CancerCell.2021@meta.data)-4):ncol(Bi.CancerCell.2021@meta.data)] <- paste0(TF.names, '_targets')
Bi.CancerCell.2021$cellType <- factor(Bi.CancerCell.2021$cellType, levels = c(setdiff(unique(Bi.CancerCell.2021$cellType), c("Tumor")), c("Tumor")))
signature.scores <- Bi.CancerCell.2021@meta.data
pdf("Bi.CancerCell.2021.targetScore.pdf", height = 4)
p <- lapply(TF.names, function(x){
p <- ggviolin(signature.scores, y=paste0(x, '_targets'), x='cellType', pt.size=0, fill = 'cellType', add = "mean_sd", error.plot = "crossbar") +
xlab('') + ylab(paste0(x, ' target score')) + ggtitle('') +
theme(plot.margin = unit(c(0, 0, 0, 0.1), "in"), axis.title.y=element_text(face='bold'), axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
NoLegend() + stat_compare_means(ref.group = "Tumor", label = "p.signif")
print(p)
return(p)
})
dev.off()
############################################3.Braun.CancerCell.2021###############################################
Braun.CancerCell.2021 <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/Braun_2021_CancerCell_scRNA_ccRCC/diff.state.ccRCC.rds")
cellType <- Braun.CancerCell.2021@meta.data$ClusterName_AllCells
cellType <- gsub("Tumor cell.*", "Tumor", cellType)
cellType <- gsub("CD8\\+ T cell.*", "CD8+ T cell", cellType)
cellType <- gsub("CD8\\+ Tcell\\.3", "CD8+ T cell", cellType)
cellType <- gsub("CD4\\+ T cell.*", "CD4+ T cell", cellType)
cellType <- gsub("Myeloid cell.*", "Myeloid cell", cellType)
cellType <- gsub("NK cell.*", "NK cell", cellType)
cellType <- gsub("^T cell mixed|Tumor-immune doublet|Immune doublet\\.1|Immune doublet\\.2|Immune doublet\\.3$", "doublet", cellType)
Braun.CancerCell.2021 <- AddMetaData(Braun.CancerCell.2021, cellType, "cellType")
Braun.CancerCell.2021 <- subset(Braun.CancerCell.2021, subset = cellType %in% setdiff(unique(Braun.CancerCell.2021$cellType), "doublet"))
# select tumor sample
Braun.CancerCell.2021.tumor <- subset(Braun.CancerCell.2021, subset = Tumor_Normal == "T")
Braun.CancerCell.2021 <- NormalizeData(Braun.CancerCell.2021, verbose = FALSE) # 157136 cells
Braun.CancerCell.2021.tumor <- NormalizeData(Braun.CancerCell.2021.tumor, verbose = FALSE) # 116171 cells
pdf("Braun.CancerCell.2021.FourTF.expression.pdf", width = 5)
DotPlot(Braun.CancerCell.2021, cols = c("#1e90ff", "#ff5a36"), features = four.TFs, group.by = "cellType", dot.scale = 4) + RotatedAxis() + theme(axis.text.x = element_text(size = 8)) + theme(axis.text.y = element_text(size = 8))
dev.off()
pdf("Braun.CancerCell.2021.FourTF.expression.Vlnplot.pdf", width = 5)
VlnPlot(Braun.CancerCell.2021, features = four.TFs, group.by="cellType", same.y.lims=T,flip = T, stack = T) & xlab("") & ylab("Log-normalized expression") & theme(legend.position="none", axis.text.x = element_text(angle = 90, vjust = 0.5))
dev.off()
pdf("Braun.CancerCell.2021.tumorTF.expression.pdf")
DotPlot(Braun.CancerCell.2021, cols = c("#1e90ff", "#ff5a36"), features = tumor.TFs$Name, group.by = "cellType", dot.scale = 4) + theme(axis.text.x = element_text(size = 8, angle = 90, hjust = 1, vjust = 0.5)) + theme(axis.text.y = element_text(size = 8))
dev.off()
Braun.CancerCell.2021 <- AddModuleScore(Braun.CancerCell.2021, target.genes.list, name = TF.names)
colnames(Braun.CancerCell.2021@meta.data)[(ncol(Braun.CancerCell.2021@meta.data)-4):ncol(Braun.CancerCell.2021@meta.data)] <- paste0(TF.names, '_targets')
Braun.CancerCell.2021$cellType <- factor(Braun.CancerCell.2021$cellType, levels = c(setdiff(names(table(Braun.CancerCell.2021$cellType)), "Tumor cell"), "Tumor cell"))
signature.scores <- Braun.CancerCell.2021@meta.data
pdf("Braun.CancerCell.2021.ccRCCSample.targetScore.pdf", height = 4)
p <- lapply(TF.names, function(x){
p <- ggviolin(signature.scores, y=paste0(x, '_targets'), x='cellType', pt.size=0, fill = 'cellType', add = "mean_sd", error.plot = "crossbar") +
xlab('') + ylab(paste0(x, ' target score')) + ggtitle('') +
theme(plot.margin = unit(c(0, 0, 0, 0.1), "in"), axis.title.y=element_text(face='bold'), axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
NoLegend() + stat_compare_means(ref.group = "Tumor", label = "p.signif")
print(p)
return(p)
})
dev.off()
# Tumor region
Braun.CancerCell.2021.tumor <- AddModuleScore(Braun.CancerCell.2021.tumor, target.genes.list, name = TF.names)
colnames(Braun.CancerCell.2021.tumor@meta.data)[(ncol(Braun.CancerCell.2021.tumor@meta.data)-4):ncol(Braun.CancerCell.2021.tumor@meta.data)] <- paste0(TF.names, '_targets')
Braun.CancerCell.2021.tumor$cellType <- factor(Braun.CancerCell.2021.tumor$cellType, levels = c(setdiff(unique(Braun.CancerCell.2021.tumor$cellType), "Tumor"), "Tumor"))
signature.scores <- Braun.CancerCell.2021.tumor@meta.data
pdf("Braun.CancerCell.2021.ccRCCRegion.targetScore.pdf", height = 4)
p <- lapply(TF.names, function(x){
p <- ggviolin(signature.scores, y=paste0(x, '_targets'), x='cellType', pt.size=0, fill = 'cellType', add = "mean_sd", error.plot = "crossbar") +
xlab('') + ylab(paste0(x, ' target score')) + ggtitle('') +
theme(plot.margin = unit(c(0, 0, 0, 0.1), "in"), axis.title.y=element_text(face='bold'), axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
NoLegend() + stat_compare_means(ref.group = "Tumor", label = "p.signif")
print(p)
return(p)
})
dev.off()
############################################4.CORCES_2018_Science_ATACseq_TCGA###############################################
#### motif TFs
cluster.TFs <- read.table("/data/active_data/lzl/RenalTumor-20200713/Data/CORCES_2018_Science_ATACseq_TCGA/DataS4.TF.enriched.in.clusteredPeak.txt", header = T, stringsAsFactors = F, sep = "\t")
rownames(cluster.TFs) <- cluster.TFs$TF_Motif_Name
tumor.cluster.TFs <- cluster.TFs[which(cluster.TFs$TF_Name %in% tumor.TFs$Name),]
four.cluster.TFs <- cluster.TFs[which(cluster.TFs$TF_Name %in% four.TFs),]
tumor.cluster.TFs <- tumor.cluster.TFs[, -c(1:4)]
four.cluster.TFs <- four.cluster.TFs[, -c(1:4)]
col_fun <- colorRamp2(c(0, 250), c("white", "red"))
pdf("CORCES_2018_Science_ATACseq_TCGA.tumorTFs.heatmap.pdf")
Heatmap(tumor.cluster.TFs, name = "-log10(P value)", col = col_fun,
width = unit(10, "cm"), show_row_dend = F, show_column_dend = F,
column_names_gp = gpar(fontsize = 10), row_names_gp = gpar(fontsize = 5))
dev.off()
pdf("CORCES_2018_Science_ATACseq_TCGA.fourTFs.heatmap.pdf")
Heatmap(four.cluster.TFs, name = "-log10(P value)", col = col_fun,
width = unit(10, "cm"), height = unit(5, "cm"), show_row_dend = F, show_column_dend = F,
column_names_gp = gpar(fontsize = 10), row_names_gp = gpar(fontsize = 10))
dev.off()
# adjust the show
idx <- c("ISL1_617", "HOXC5_847", "HOXC5_805", "VENTX_748", "OTP_804")
index <- match(idx, cluster.TFs$TF_Motif_Name)
four.cluster.TFs <- cluster.TFs[index,]
rownames(four.cluster.TFs) <- paste0(four.cluster.TFs$TF_Name, " (", four.cluster.TFs$CIS.BP_ID, ")")
four.cluster.TFs <- four.cluster.TFs[, -c(1:4)]
pdf("CORCES_2018_Science_ATACseq_TCGA.fourTFs.heatmap.fined.pdf")
Heatmap(four.cluster.TFs, name = "-log10(P value)", col = col_fun,
column_split = colnames(four.cluster.TFs), row_split = rownames(four.cluster.TFs),
row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), border = TRUE, border_gp = gpar(col = "grey"),
width = unit(10, "cm"), height = unit(4, "cm"), show_row_dend = F, show_column_dend = F,
column_names_gp = gpar(fontsize = 10), row_names_gp = gpar(fontsize = 10))
dev.off()
#### Peak
library(Signac)
library(GenomicRanges)
panCancer.peaks <- read.table("/data/active_data/lzl/RenalTumor-20200713/Data/CORCES_2018_Science_ATACseq_TCGA/TCGA-ATAC_PanCancer_PeakSet.txt", header = T, stringsAsFactors = F, sep = "\t")
# 562709 peaks
panCancer.peaks.gr <- makeGRangesFromDataFrame(panCancer.peaks)
panCancer.peaks.gr$score <- panCancer.peaks$score
panCancer.peaks.gr$annotation <- panCancer.peaks$annotation
panCancer.peaks.gr$percentGC <- panCancer.peaks$percentGC
panCancer.peaks.gr$name <- panCancer.peaks$name
panCancer.peaks.totalNumber <- as.data.frame(table(gsub("_.*", "", panCancer.peaks.gr$name)))
cellType.sig.pos.DARs <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC/4.Peak/cellType.sig.pos.DARs.rds")
cellType.gr.overlap <- lapply(as.character(unique(cellType.sig.pos.DARs$cellType)), function(x){
idx <- which(cellType.sig.pos.DARs$cellType == x)
cellType.DARs <- cellType.sig.pos.DARs[idx,]
gr <- StringToGRanges(cellType.DARs$genomicRegion)
gr$gene <- cellType.DARs$gene
gr$gene_biotype <- cellType.DARs$gene_biotype
gr$p_val_adj <- cellType.DARs$p_val_adj
gr$avg_log2FC <- cellType.DARs$avg_log2FC
gr$name <- cellType.DARs$cellType
overlap <- findOverlaps(panCancer.peaks.gr, gr)
return(list(gr = gr, overlap = overlap))
})
names(cellType.gr.overlap) <- as.character(unique(cellType.sig.pos.DARs$cellType))
percentage.ratio <- sapply(cellType.gr.overlap, function(x){
panCancer.ratio <- panCancer.peaks.gr[unique(x$overlap@from),]
panCancer.cellType.totalNumber <- as.data.frame(table(gsub("_.*", "", panCancer.ratio$name)))
panCancer.cellType.totalNumber$ratio <- panCancer.cellType.totalNumber$Freq/panCancer.peaks.totalNumber$Freq
return(panCancer.cellType.totalNumber$ratio)
})
rownames(percentage.ratio) <- panCancer.peaks.totalNumber$Var1
# re-order the column
percentage.ratio <- percentage.ratio[, c(7,11,8,5,6,3,9,12,10,1,2,4)]
col_fun <- colorRamp2(c(0, 0.12), c("white", "blue"))
pdf("CORCES_2018_Science_ATACseq_TCGA.peak.heatmap.pdf")
Heatmap(percentage.ratio, name = "Percentage", col = col_fun,
column_split = factor(colnames(percentage.ratio), levels = colnames(percentage.ratio)), row_split = rownames(percentage.ratio),
row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), border = TRUE, border_gp = gpar(col = "grey"),
width = unit(6, "cm"), height = unit(8, "cm"), show_row_dend = F, show_column_dend = F,
cluster_rows = F, cluster_columns = F,
column_names_gp = gpar(fontsize = 10), row_names_gp = gpar(fontsize = 10))
dev.off()
# permutation test
library(parallel)
peak.number <- as.data.frame(table(cellType.sig.pos.DARs$cellType))
cellType.peak.number <- peak.number$Freq
names(cellType.peak.number) <- peak.number$Var1
permutated.overlap <- function(N, percentage.ratio, cellType.gr.overlap, panCancer.peaks.totalNumber, cellType.sig.pos.DARs, cellType.peak.number){
random.res <- lapply(N, function(x){
res <- sapply(colnames(percentage.ratio), function(cellType){
cat("Calculating cell type:", cellType, "\n")
celltype.overlap <- percentage.ratio[,cellType]
peak.num <- cellType.peak.number[cellType]
new.peaks <- cellType.sig.pos.DARs[sample(1:nrow(cellType.sig.pos.DARs), size = peak.num),]
gr <- StringToGRanges(new.peaks$genomicRegion)
gr$name <- cellType
overlap <- findOverlaps(panCancer.peaks.gr, gr)
panCancer.ratio <- panCancer.peaks.gr[unique(overlap@from),]
panCancer.cellType.totalNumber <- as.data.frame(table(gsub("_.*", "", panCancer.ratio$name)))
panCancer.cellType.totalNumber$ratio <- panCancer.cellType.totalNumber$Freq/panCancer.peaks.totalNumber$Freq
return(panCancer.cellType.totalNumber$ratio)
})
rownames(res) <- panCancer.peaks.totalNumber$Var1
return(res)
})
if(class(random.res) == "try-error"){
return("failed random!")
}else{
return(random.res)
}
}
library(parallel)
mc <- getOption("mc.cores", 48)
set.seed(101)
permutated.results <- mclapply(X = 1:1000,
FUN = permutated.overlap,
percentage.ratio = percentage.ratio,
cellType.gr.overlap = cellType.gr.overlap,
panCancer.peaks.totalNumber = panCancer.peaks.totalNumber,
cellType.sig.pos.DARs = cellType.sig.pos.DARs,
cellType.peak.number = cellType.peak.number,
mc.cores = mc)
saveRDS(permutated.results, file = "/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC/7.TF.analysis/ExtraData/CORCES_2018_Science_ATACseq_TCGA.permutated.results.rds")
# test
p.matrix <- matrix(0, ncol = ncol(percentage.ratio), nrow = nrow(percentage.ratio))
for(i in 1:nrow(percentage.ratio)){
for(j in 1:ncol(percentage.ratio)){
actual.value <- percentage.ratio[i,j]
random.value <- sapply(permutated.results, function(x){
return(x[[1]][i,j])
})
n <- length(which(random.value<=actual.value)) # H0: μ<=μ0
res <- binom.test(x = n, n = 1000, p = 0.5, alternative = "greater") # H1:μ>μ0
p.matrix[i,j] <- res$p.value
}
}
adj.p.matrix <- matrix(p.adjust(p.matrix, method = "fdr"), ncol = ncol(percentage.ratio), nrow = nrow(percentage.ratio))
rownames(adj.p.matrix) <- rownames(percentage.ratio)
colnames(adj.p.matrix) <- colnames(percentage.ratio)
adj.p.matrix <- -log10(adj.p.matrix)
col_fun <- colorRamp2(c(0, 300), c("white", "red"))
pdf("CORCES_2018_Science_ATACseq_TCGA.peak.heatmap.fdr.pdf")
Heatmap(adj.p.matrix, name = "-log10(FDR)", col = col_fun,
column_split = factor(colnames(adj.p.matrix), levels = colnames(adj.p.matrix)), row_split = rownames(adj.p.matrix),
row_gap = unit(0, "mm"), column_gap = unit(0, "mm"), border = TRUE, border_gp = gpar(col = "grey"),
width = unit(6, "cm"), height = unit(8, "cm"), show_row_dend = F, show_column_dend = F,
cluster_rows = F, cluster_columns = F,
column_names_gp = gpar(fontsize = 10), row_names_gp = gpar(fontsize = 10))
dev.off()