[40a513]: / ATAC / AnalysisPipeline / 8.1.Immune.CD8T.R

Download this file

451 lines (418 with data), 25.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#' @description: analysis CD8+ T cell
library(Signac)
library(Seurat)
library(harmony)
library(SeuratWrappers)
library(GenomeInfoDb)
library(EnsDb.Hsapiens.v86) #---GRCh38 (hg38)
library(ggplot2)
library(patchwork)
library(ComplexHeatmap)
library(circlize)
library(clustree)
library(vegan)
library(dplyr)
library(tidyverse)
set.seed(101)
library(openxlsx)
library(future)
plan("multiprocess", workers = 10)
options(future.globals.maxSize = 50000 * 1024^2) #50G
library(GenomicRanges)
library(ggpubr)
source(file = "/home/longzhilin/Analysis_Code/Visualization/colorPalettes.R")
source(file = "/home/longzhilin/Analysis_Code/SingleCell/scATAC.Integrate.multipleSample.R")
setwd("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC")
source(file = "/home/longzhilin/Analysis_Code/code/ratio.plot.R")
scATAC <- readRDS("scATAC.data.pro.rds")
DefaultAssay(scATAC) <- "ATAC"
cell.type <- "CD8+ T cell"
sub.ATAC <- subset(scATAC, subset = AnnotatedcellType == cell.type)
####----------------------------------------------------- 1. clustering cells
sub.ATAC <- RunTFIDF(sub.ATAC)
sub.ATAC <- FindTopFeatures(sub.ATAC, min.cutoff = "q1")
pdf("8.Immune/CD8T/Harmony.integration.PC20.pdf")
sub.scATAC.harmony <- Harmony.integration.reduceDimension(scATAC.object = sub.ATAC, set.resolutions = seq(0.2, 1.2, by = 0.1), group.by.vars = "dataset", assay = "ATAC", PC = 20, npcs = 30)
dev.off()
sub.scATAC.harmony$seurat_clusters <- sub.scATAC.harmony$ATAC_snn_res.0.4
Idents(sub.scATAC.harmony) <- sub.scATAC.harmony$seurat_clusters
saveRDS(sub.scATAC.harmony, file = "8.Immune/CD8T/sub.scATAC.harmony.rds")
#### integrate scRNA and scATAC
source(file = "/home/longzhilin/Analysis_Code/SingleCell/Integrate.scRNA.scATAC.R")
source(file = "/home/longzhilin/Analysis_Code/SingleCell/variableFeatureSelection.R")
sub.scRNA.harmony <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/5.Immune/CD8T/sub.scRNA.harmony.pro.rds")
DefaultAssay(sub.scRNA.harmony) <- "RNA"
VariableFeatures(sub.scRNA.harmony) <- sub.scRNA.harmony@assays$SCT@var.features
pdf("8.Immune/CD8T/Integrate.scRNA.scATAC.PC20.pdf")
transfer.anchors <- Integrate.scRNA.scATAC(scATAC.object = sub.scATAC.harmony, scRNA.object = sub.scRNA.harmony,
scATAC.assay = "ACTIVITY", scRNA.assay = "RNA", ref.npcs = 30, feature.assay = "SCT", dims = 20,
nfeatures = 3000, class.label = "cellType3", scATAC.reduction = "harmony", PC = 20)
Coembedding <- Coembedding.scATAC.scRNA(transfer.anchors = transfer.anchors$transfer.anchors,
scATAC.object = transfer.anchors$scATAC.object,
scATAC.reduction = "harmony", PC = 20, dims = 30, observe.vars = c("dataset", "type"),
scRNA.object = sub.scRNA.harmony, class.label = "cellType3")
dev.off()
source(file = "/home/longzhilin/Analysis_Code/code/ratio.plot.R")
sub.scATAC.harmony$scRNA.id <- Coembedding$scATAC.object$predicted.id
sub.scATAC.harmony$scATAC.id <- sub.scATAC.harmony$seurat_clusters
pdf("8.Immune/CD8T/scRNA.scATAC.comparsion.pdf")
ratio.plot(seurat.object = sub.scATAC.harmony, id.vars1 = "scRNA.id", id.vars2 = "scATAC.id", angle = 60)
dev.off()
####----------------------------------------------------- 2. differential peaks
Idents(sub.scATAC.harmony) <- sub.scATAC.harmony$seurat_clusters
idents <- as.character(levels(sub.scATAC.harmony))
cluster.DARs <- FindAllMarkers(sub.scATAC.harmony,
test.use = 'LR',
logfc.threshold=0.25,
min.pct = 0.05, # often necessary to lower the min.pct threshold
latent.vars = "peak_region_fragments")
cf <- ClosestFeature(sub.scATAC.harmony, regions = rownames(cluster.DARs)) # Find the closest feature to a given set of genomic regions
cluster.DARs <- cbind(cluster.DARs, gene=cf$gene_name, gene_biotype = cf$gene_biotype, type = cf$type, distance=cf$distance)
colnames(cluster.DARs)[6:7] <- c("cluster", "genomicRegion")
saveFormat <- lapply(idents, function(x){
index <- which(cluster.DARs$cluster == x)
DARs <- cluster.DARs[index,]
DARs.up <- DARs %>% filter(avg_log2FC>0) %>% arrange(p_val_adj)
DARs.down <- DARs %>% filter(avg_log2FC<0) %>% arrange(desc(p_val_adj))
DARs <- rbind(DARs.up, DARs.down)
return(DARs)
})
write.xlsx(saveFormat, file = "8.Immune/CD8T/cluster.all.DARs.xlsx", sheetName = idents, rowNames = F)
saveRDS(cluster.DARs, file = "8.Immune/CD8T/cluster.all.DARs.rds")
####----------------------------------------------------- 2. annotated cell type
DefaultAssay(sub.scATAC.harmony) <- "ACTIVITY"
features <- c("CD3E", "CD3D", "CD8A", "APOE", "C1QC", "PLVAP", "CD4", "FGFBP2", "KLRD1")
pdf("8.Immune/CD8T/markerExpression.pdf")
VlnPlot(sub.scATAC.harmony, features = c("CD3D", "CD3E", "C1QC", "APOE"), ncol = 2)
FeaturePlot(sub.scATAC.harmony, features = c("CD3D", "CD3E", "C1QC", "APOE"), cols = c("lightgrey", "red"), ncol = 2)
VlnPlot(sub.scATAC.harmony, features = c("CD8A", "CD8B", "PLVAP", "ESM1"), ncol = 2)
FeaturePlot(sub.scATAC.harmony, features = c("CD8A", "CD8B", "PLVAP", "ESM1"), cols = c("lightgrey", "red"), ncol = 2)
VlnPlot(sub.scATAC.harmony, features = c("PRF1", "TCF7", "TOX", "PDCD1"), ncol = 2)
FeaturePlot(sub.scATAC.harmony, features = c("PRF1", "TCF7", "TOX", "PDCD1"), cols = c("lightgrey", "red"), ncol = 2)
dev.off()
pdf("8.Immune/CD8T/cluster.markerExpression.dot.pdf", height = 3, width = 5)
DotPlot(sub.scATAC.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "seurat_clusters", dot.scale = 3.5) + RotatedAxis() + theme(axis.text.x = element_text(size = 7)) + theme(axis.text.y = element_text(size = 8))
DotPlot(sub.scATAC.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "seurat_clusters", dot.scale = 3.5) + RotatedAxis() + NoLegend() + theme(axis.text.x = element_text(size = 7)) + theme(axis.text.y = element_text(size = 8))
dev.off()
pdf("8.Immune/CD8T/cluster.markerExpression.coveragePlot.pdf")
DefaultAssay(sub.scATAC.harmony) <- "Peaks"
CoveragePlot(
object = sub.scATAC.harmony,
region = c("CD3D", "CD3E", "APOE", "C1QC"),
extend.upstream = 3000,
extend.downstream = 3000
)
CoveragePlot(
object = sub.scATAC.harmony,
region = c("CD8A", "CD8B", "PLVAP", "ESM1"),
extend.upstream = 3000,
extend.downstream = 3000
)
region.highlight <- c("chr4-108157400-108174201", "chr5-35851000-35865000", "chr17-40559800-40566601", "chr1-169706600-169712401")
CoveragePlot(
object = sub.scATAC.harmony,
region = region.highlight,
extend.upstream = 3000,
extend.downstream = 3000
)
region.highlight <- c("chr8-59115000-59121000", "chr2-241856401-241860601", "chr10-95755400-95758401", "chr12-68157600-68159800")
CoveragePlot(
object = sub.scATAC.harmony,
region = region.highlight,
extend.upstream = 3000,
extend.downstream = 3000
)
dev.off()
##Plot--- cell number
pdf("8.Immune/CD8T/cluster.ratio.pdf", height = 4, width = 6)
ratio.plot(seurat.object = sub.scATAC.harmony, id.vars1 = "orig.ident", id.vars2 = "seurat_clusters", angle = 60)
dev.off()
####----------------------------------------------------- 3. remove the condfounding cell type
# 1. cell number < 100
# 2. condfounding cell type
sub.scATAC.harmony <- subset(sub.scATAC.harmony, subset = seurat_clusters %in% c(0:4))
sub.scATAC.harmony$seurat_clusters <- as.character(sub.scATAC.harmony$seurat_clusters)
#consistent with scRNA-seq
cellType2 <- sub.scATAC.harmony$seurat_clusters
cellType2 <- gsub("^0$", "C3", cellType2)
cellType2 <- gsub("^1$", "C2", cellType2)
cellType2 <- gsub("^2$", "C1", cellType2)
cellType2 <- gsub("^3$", "C4", cellType2)
cellType2 <- gsub("^4$", "C5", cellType2)
sub.scATAC.harmony$cellType2 <- factor(sub.scATAC.harmony$cellType2, levels = c("C1", "C2", "C3", "C4", "C5"))
Idents(sub.scATAC.harmony) <- sub.scATAC.harmony$cellType2
cellType3 <- sub.scATAC.harmony$cellType2
cellType3 <- gsub("^C1$", "Unknown", cellType3)
cellType3 <- gsub("^C2$", "Tissue-resident", cellType3)
cellType3 <- gsub("^C3$", "Exhaustion", cellType3)
cellType3 <- gsub("^C4$", "Exhausted IEG.C2", cellType3)
cellType3 <- gsub("^C5$", "Exhausted IEG.C1", cellType3)
sub.scATAC.harmony$cellType3 <- factor(cellType3, levels = c("Unknown", "Tissue-resident", "Exhausted IEG.C1", "Exhausted IEG.C2", "Exhaustion"))
Idents(sub.scATAC.harmony) <- sub.scATAC.harmony$cellType3
saveRDS(sub.scATAC.harmony, file = "8.Immune/CD8T/sub.scATAC.harmony.pro.rds")
#### set idents
sub.scATAC.harmony$cellType <- sub.scATAC.harmony$cellType3
Idents(sub.scATAC.harmony) <- sub.scATAC.harmony$cellType
cellType.colors <- c("#00BF7D", "#A3A500", "#00BFC4", "#00B0F6", "#C77CFF")
pdf("8.Immune/CD8T/cluster.pro.pdf")
DimPlot(object = sub.scATAC.harmony, label = TRUE, group.by = "seurat_clusters", pt.size = 1.5) + NoLegend()
DimPlot(object = sub.scATAC.harmony, label = TRUE, group.by = "orig.ident", pt.size = 1.5) + NoLegend()
DimPlot(object = sub.scATAC.harmony, label = TRUE, group.by = "seurat_clusters", pt.size = 1.5, reduction = "tsne") + NoLegend()
DimPlot(object = sub.scATAC.harmony, label = TRUE, group.by = "orig.ident", pt.size = 1.5, reduction = "tsne") + NoLegend()
dev.off()
pdf("8.Immune/CD8T/cellType.pdf")
DimPlot(object = sub.scATAC.harmony, cols = cellType.colors, label = TRUE, group.by = "cellType", pt.size = 1.5) + NoLegend()
DimPlot(object = sub.scATAC.harmony, label = TRUE, group.by = "orig.ident", pt.size = 1.5)
DimPlot(object = sub.scATAC.harmony, cols = cellType.colors, label = TRUE, group.by = "cellType", pt.size = 1.5, reduction = "tsne") + NoLegend()
DimPlot(object = sub.scATAC.harmony, label = TRUE, group.by = "orig.ident", pt.size = 1.5, reduction = "tsne")
dev.off()
##Plot--- cell number
pdf("8.Immune/CD8T/cellType.ratio.pdf", height = 4, width = 6)
ratio.plot(seurat.object = sub.scATAC.harmony, id.vars1 = "orig.ident", id.vars2 = "cellType", angle = 60)
dev.off()
####----------------------------------------------------- 4. marker activity
DefaultAssay(sub.scATAC.harmony) <- "ACTIVITY"
features <- c("LEF1", "IL7R", "CCR7", "SELL", "TCF7", "TGFB1", "CD44", "CD69", "ZNF683", "ITGAE", "ITGA1",
"TNF", "IFNG", "KLRG1", "GZMA", "GZMH",
"NR4A1", "JUNB", "FOS", "ATF3", "DNAJB1", "HSPA1A", "EOMES",
"GZMK", "GZMB", "PRF1", "TNFRSF9", "TOX", "ENTPD1", "PDCD1", "CTLA4", "TIGIT", "LAG3", "HAVCR2")
pdf("8.Immune/CD8T/markerExpression.pro.pdf")
VlnPlot(sub.scATAC.harmony, features = c("LEF1", "IL7R", "TCF7", "CD44"), ncol = 2)
FeaturePlot(sub.scATAC.harmony, features = c("LEF1", "IL7R", "TCF7", "CD44"), cols = c("lightgrey", "red"), ncol = 2)
VlnPlot(sub.scATAC.harmony, features = c("CD69", "ZNF683", "ITGA1", "ITGAE"), ncol = 2)
FeaturePlot(sub.scATAC.harmony, features = c("CD69", "ZNF683", "ITGA1", "ITGAE"), cols = c("lightgrey", "red"), ncol = 2)
VlnPlot(sub.scATAC.harmony, features = c("JUNB", "FOS", "DNAJB1", "HSPA1A"), ncol = 2)
FeaturePlot(sub.scATAC.harmony, features = c("JUNB", "FOS", "DNAJB1", "HSPA1A"), cols = c("lightgrey", "red"), ncol = 2)
VlnPlot(sub.scATAC.harmony, features = c("PDCD1", "TOX", "ENTPD1", "HAVCR2"), ncol = 2)
FeaturePlot(sub.scATAC.harmony, features = c("PDCD1", "TOX", "ENTPD1", "HAVCR2"), cols = c("lightgrey", "red"), ncol = 2)
dev.off()
# vlnplot
pdf("8.Immune/CD8T/markerExpression.vlnplot.pdf", width = 5)
p1 <- VlnPlot(sub.scATAC.harmony,features = features[1:17], group.by="cellType", same.y.lims=T,flip = T, stack = T) & xlab("") & ylab("Log-normalized activity") & theme(legend.position="none", axis.text.x = element_text(angle = 90, vjust = 0.5))
p2 <- VlnPlot(sub.scATAC.harmony,features = features[18:34], group.by="cellType", same.y.lims=T,flip = T, stack = T) & xlab("") & ylab("Log-normalized activity") & theme(legend.position="none", axis.text.x = element_text(angle = 90, vjust = 0.5))
ggarrange(p1,p2,ncol=2)
dev.off()
avg.expression <- AverageExpression(sub.scATAC.harmony, features, assays = "ACTIVITY", slot = "data")
avg.expression <- scale(t(avg.expression$ACTIVITY))
pdf("8.Immune/CD8T/cellType.markerExpression.heatmap.pdf")
Heatmap(t(avg.expression), cluster_rows = F, show_column_dend = F, name = "Gene activity",
width = unit(2.5, "cm"), height = unit(8, "cm"),
row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8))
dev.off()
source("/home/longzhilin/Analysis_Code/SingleCell/FindRegion.R")
DefaultAssay(sub.scATAC.harmony) <- "Peaks"
peak.info <- readRDS("4.Peak/peak.annotation.simple.ChIPseeker.rds")
library(ChIPseeker)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
promoter <- getPromoters(TxDb=txdb, upstream=1000, downstream=1000)
pdf("8.Immune/CD8T/markerExpression.pro.peaks.pdf")
res <- sapply(features, function(x){
cat(x, "...\n")
regions <- FindRegion(object = sub.scATAC.harmony, region = x, assay = "Peaks", extend.upstream = 1000, extend.downstream = 1000)
idx <- data.frame(findOverlaps(regions, promoter))
if(nrow(idx)>0){
p <- CoveragePlot(
object = sub.scATAC.harmony,
region = x,
links = F,
peaks = F,
extend.upstream = 1000,
extend.downstream = 1000,
region.highlight = promoter[idx[,2],])
}else{
p <- CoveragePlot(
object = sub.scATAC.harmony,
region = x,
links = F,
extend.upstream = 1000,
extend.downstream = 1000,
peaks = F)
}
print(p)
return(regions)
})
dev.off()
Naive.Marker <- c("LEF1", "IL7R", "CCR7", "SELL")
pdf("8.Immune/CD8T/markerExpression.Naive.peaks.pdf")
res <- lapply(Naive.Marker, function(x){
cat(x, "...\n")
regions <- FindRegion(object = sub.scATAC.harmony, region = x, assay = "Peaks", extend.upstream = 3000, extend.downstream = 3000)
idx <- data.frame(findOverlaps(regions, promoter))
if(nrow(idx)>0){
p <- CoveragePlot(
object = sub.scATAC.harmony,
region = x,
links = F,
peaks = F,
extend.upstream = 0,
extend.downstream = 0,
region.highlight = promoter[idx[,2],])
}else{
p <- CoveragePlot(
object = sub.scATAC.harmony,
region = x,
links = F,
extend.upstream = 0,
extend.downstream = 0,
peaks = F)
}
return(p)
})
ggarrange(res[[1]], res[[2]], res[[3]], res[[4]], ncol = 2, nrow = 2)
dev.off()
pdf("8.Immune/CD8T/markerExpression.Naive.maker.pdf", height = 2)
DotPlot(sub.scATAC.harmony, features = c(Naive.Marker, "IL2RA", "CD44", "CD69", "TOX", "ENTPD1", "PDCD1", "CTLA4", "TIGIT", "LAG3"), cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + theme(axis.text.x = element_text(size = 7, angle = 90, hjust = 1), axis.text.y = element_text(size = 8))
dev.off()
DefaultAssay(sub.scATAC.harmony) <- "ACTIVITY"
pdf("8.Immune/CD8T/cellType.marker.dot.pdf", height = 2)
DotPlot(sub.scATAC.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + theme(axis.text.x = element_text(size = 7, angle = 90, hjust = 1)) + theme(axis.text.y = element_text(size = 8))
DotPlot(sub.scATAC.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + NoLegend() + theme(axis.text.x = element_text(size = 7, angle = 90, hjust = 1)) + theme(axis.text.y = element_text(size = 8))
dev.off()
pdf("8.Immune/CD8T/cellType.marker.dot.test.pdf", height = 4)
DotPlot(sub.scATAC.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + theme(axis.text.x = element_text(size = 7, angle = 90, hjust = 1)) + theme(axis.text.y = element_text(size = 8))
DotPlot(sub.scATAC.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + NoLegend() + theme(axis.text.x = element_text(size = 7, angle = 90, hjust = 1)) + theme(axis.text.y = element_text(size = 8))
dev.off()
TFs <- c("FOXP1", "TBX21", "PRDM1", "TCF7", "LEF1", "RUNX3", "GNLY", "GZMA", "GZMB", "GZMK", "GZMM", "PRF1", "PDCD1", "TOX")
pdf("8.Immune/CD8T/cellType.marker.TF.dot.pdf", height = 2)
DotPlot(sub.scATAC.harmony, features = TFs, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + theme(axis.text.x = element_text(size = 7, angle = 90, hjust = 1)) + theme(axis.text.y = element_text(size = 8))
DotPlot(sub.scATAC.harmony, features = TFs, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + NoLegend() + theme(axis.text.x = element_text(size = 7, angle = 90, hjust = 1)) + theme(axis.text.y = element_text(size = 8))
dev.off()
####----------------------------------------------------- 3. analysis cell state based on the functional gene sets
## 1.load signature
DefaultAssay(sub.scATAC.harmony) <- "ACTIVITY"
T.signature1 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/Tsignature.Braun.CancerCell.txt", header = T, stringsAsFactors = F, sep = "\t")
T.signature2 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/CD8.Exhausted(anti-pd1).Bi.2021.CancerCell&Sade-Feldman et al. 2018.Cell.txt", header = T, stringsAsFactors = F, sep = "\t")
T.signature3 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/FunctionalStateOfTcell.Mathewson.2021.Cell.txt", header = T, stringsAsFactors = F, sep = "\t")
T.signature4 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/ImmuneSignatureGeneSet.T.Chung.2017.NatureComm.txt", header = T, stringsAsFactors = F, sep = "\t")
T.signature5 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/CD8.Tstate.vanderLeun.2020.NatureReviewsCancer.txt", header = T, stringsAsFactors = F, sep = "\t")
T.signature6 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/CD8.Resident&Exhausted.MomenehForoutan.2020.BioRXiv.txt", header = T, stringsAsFactors = F, sep = "\t")
signature.genes <- rbind(T.signature1, T.signature2)
signature.genes <- rbind(signature.genes, T.signature3)
signature.genes <- rbind(signature.genes, T.signature4)
signature.genes <- rbind(signature.genes, T.signature5)
signature.genes <- rbind(signature.genes, T.signature6)
signature.genes <- signature.genes[which(signature.genes$Type %in% c("Naive", "Effector memory", "Central memory", "Res", "Exh",
"Cell_stress", "Cytotoxicity Signature", "Exhaustion",
"Terminal_differentiation", "Progenitor Exhausted CD8", "Terminally Exhausted CD8")),]
signature.genes$Type <- gsub("Cytotoxicity Signature", "Cytotoxic", signature.genes$Type)
signature.genes$Type <- gsub("_", " ", signature.genes$Type)
signature.genes$Type <- gsub(" CD8", "", signature.genes$Type)
signature.genes$Type <- gsub("Exhausted", "Exhaustion", signature.genes$Type)
signature.genes$Type <- gsub("Terminally", "Terminal", signature.genes$Type)
##-- 2.VISION method
source(file = "/home/longzhilin/Analysis_Code/SingleCell/vision_seurat.R")
source(file = "/home/longzhilin/Analysis_Code/SingleCell/vision.plot.R")
require(VISION)
library(reshape2)
options(mc.cores = 36)
## construct the vision calculate mode
# https://yoseflab.github.io/VISION/articles/web_only/Seurat.html
# Expression data should be scaled and normalized, but not log-transformed
# obj@[[assay]]@counts is used as the expression input (after normalizing to a library size of 10,000)
exp.data <- GetAssayData(sub.scATAC.harmony, slot = "data", assay = "ACTIVITY")
idx <- match(signature.genes$Gene, rownames(exp.data))
signature.genes <- signature.genes[which(!is.na(idx)),]
signature.names <- unique(signature.genes$Type)
signature.genesets <- c()
positive <- 1
for(i in names(table(signature.genes$Type))){
genes <- signature.genes$Gene[which(signature.genes$Type==i)]
sigData <- rep(positive, length(genes))
names(sigData) <- genes
sig <- createGeneSignature(name = i, sigData = sigData)
signature.genesets <- c(signature.genesets, sig)
}
vision.obj <- Vision(exp.data, signatures = signature.genesets, min_signature_genes = 4)
vision.obj <- analyze(vision.obj)
vision.obj@metaData$cellType <- sub.scATAC.harmony$cellType
saveRDS(vision.obj, file = "8.Immune/CD8T/vision_signatureScore.rds")
library(reshape2)
sigScore <- as.data.frame(vision.obj@SigScores)
sigScore$group <- sub.scATAC.harmony$cellType
vision.group.score <- melt(sigScore, id.vars = "group", variable.name = "Type", value.name = "Score")
pdf("8.Immune/CD8T/vision_signatureScore.pdf")
p1 <- ggboxplot(vision.group.score, x = "group", y = "Score", palette = "npg", color = "Type", xlab = "", title = "", ylab = "Score") + theme(axis.text.x = element_text(angle = 30, hjust = 1)) + stat_compare_means(aes(group = Type), label = "p.signif")
print(p1)
# heatmap
vision.score <- sigScore[,-ncol(sigScore)]
vision.score.mean <- apply(vision.score, 2, function(x){
score <- tapply(x, sub.scATAC.harmony$cellType, mean)
return(score)
})
p <- Heatmap(t(vision.score.mean), width = unit(6, "cm"), height = unit(6, "cm"), name = "Signature score",
show_row_dend = F, show_column_dend = F, row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8))
print(p)
vision.score.mean.scale <- scale(vision.score.mean) # 比较某个状态在各个细胞类型的情况
p <- Heatmap(t(vision.score.mean.scale), width = unit(6, "cm"), height = unit(6, "cm"), name = "Signature score",
show_row_dend = F, show_column_dend = F, row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8))
print(p)
# violin
plot.list <- lapply(colnames(vision.score), function(x){
my_comparisons <- as.list(as.data.frame(combn(levels(sub.scATAC.harmony$cellType)[-1],2)))
a <- sigScore[, c(x, "group")]
names(a) <- c("Signature score", "group")
p <- ggviolin(a, x = "group", y = "Signature score", title = x, color = "black", alpha = 0.8, fill = "group", add = "boxplot", add.params = list(fill = "white", size = 0.05)) +
xlab("") + rotate_x_text(angle = 45, vjust = 1) + scale_fill_manual(values = cellType.colors) +
stat_compare_means(comparisons = my_comparisons, label = "p.signif") + NoLegend()
return(p)
})
p <- ggarrange(plotlist = plot.list[1:4],ncol = 2, nrow = 2)
print(p)
p <- ggarrange(plotlist = plot.list[5:8],ncol = 2, nrow = 2)
print(p)
p <- ggarrange(plotlist = plot.list[9:11],ncol = 2, nrow = 2)
print(p)
# comparison between groups
vision.score.scale <- as.data.frame(scale(vision.score[, c("Progenitor Exhaustion", "Terminal Exhaustion")]))
vision.score.scale$group <- sub.scATAC.harmony$cellType3
group.signature.data <- pivot_longer(vision.score.scale[,c("group", "Progenitor Exhaustion", "Terminal Exhaustion")], cols = 2:3, names_to = "Type")
p <- ggviolin(group.signature.data, x = "group", y = "value",
color = "Type", palette = c("#00A087FF", "#F39B7FFF"), fill = "white",
add = "jitter", add.params = list(size = 0.1)) + ylab("Signature score") + xlab("")
p <- p + rotate_x_text(angle = 45, vjust = 1) + stat_compare_means(aes(group = Type), label = "p.signif")
print(p)
dev.off()
####----------------------------------------------------- 4. peak and motif analysis
DefaultAssay(sub.scATAC.harmony) <- "Peaks"
# add motif information
sub.scATAC.harmony <- AddMotifs(
object = sub.scATAC.harmony,
genome = BSgenome.Hsapiens.UCSC.hg38,
pfm = human_pwms_v2
)
####---- differential Motifs
library(openxlsx)
library(chromVARmotifs)
library(BSgenome.Hsapiens.UCSC.hg38)
data("human_pwms_v2")
Idents(sub.scATAC.harmony) <- sub.scATAC.harmony$cellType
scATAC.harmony <- RunChromVAR(
object = sub.scATAC.harmony,
genome = BSgenome.Hsapiens.UCSC.hg38
)
DefaultAssay(sub.scATAC.harmony) <- 'chromvar'
library(tidyverse)
GetChromvarActivities <- function(cellType, scATAC.object, motif.info) {
print(paste0("Finding chromVAR activities for: ",cellType))
differential.activity <- FindMarkers(scATAC.object,
ident.1 = cellType,
test.use = 'LR',
logfc.threshold = 0,
latent.vars = "nCount_Peaks")
motifs <- gsub("-", "_", rownames(differential.activity))
motifNames <- sapply(motifs, function(x) motif.info@motif.names[[x]])
return(cbind(differential.activity, gene = motifNames))
}
idents <- as.character(levels(Idents(sub.scATAC.harmony)))
sub.motifs.chromVAR <- lapply(idents, function(x) GetChromvarActivities(x, scATAC.object = sub.scATAC.harmony, motif.info = sub.scATAC.harmony@assays$Peaks@motifs))
names(sub.motifs.chromVAR) <- idents
sub.motifs.chromVAR <- lapply(sub.motifs.chromVAR, function(x){
up.x <- x %>% filter(avg_log2FC>0) %>% arrange(desc(avg_log2FC))
down.x <- x %>% filter(avg_log2FC<=0) %>% arrange(avg_log2FC)
x <- rbind(up.x, down.x)
return(x)
})
names(sub.motifs.chromVAR) <- idents
write.xlsx(sub.motifs.chromVAR, file = "8.Immune/CD8T/sub.motifs.chromVAR.human_pwms_v2.xlsx", sheetName = idents, rowNames = T, overwrite=T)
saveRDS(sub.motifs.chromVAR, file = "8.Immune/CD8T/sub.motifs.chromVAR.human_pwms_v2.rds")