[40a513]: / ATAC / AnalysisPipeline / 4.2.peakAnnotation.genomicLocation.R

Download this file

195 lines (171 with data), 9.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#' @description: peak annotation and enrichment analysis
##reference:
#https://hbctraining.github.io/Intro-to-ChIPseq/lessons/12_functional_analysis.html
#http://bioconductor.org/packages/devel/bioc/vignettes/ChIPseeker/inst/doc/ChIPseeker.html
library(Signac)
library(Seurat)
library(ggpubr)
library(GenomicRanges)
library(tibble)
library(dplyr)
set.seed(101)
setwd(dir = "/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC")
scATAC.data <- readRDS("scATAC.data.pro.rds")
DefaultAssay(scATAC.data) <- "Peaks"
## loading packages
library(ChIPseeker)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
library(clusterProfiler)
library(org.Hs.eg.db)
#####################################All Peak Annotation
peakSet <- GetAssayData(scATAC.data, slot = "data")
All.gr <- StringToGRanges(rownames(peakSet))
#TSS (transcription start site) region, by default TSS is defined from -3kb to +3kb
All.peakAnno <- annotatePeak(All.gr, tssRegion=c(-3000, 3000), TxDb = txdb, annoDb="org.Hs.eg.db")
saveRDS(All.peakAnno, file = "4.Peak/peak.annotation.ChIPseeker.rds")
peakAnno.info <- All.peakAnno@anno
peakAnno.info$annotation <- gsub(" .*", "", peakAnno.info$annotation)
peakAnno.info$annotation <- gsub("'", "_UTR", peakAnno.info$annotation)
peak.info <- data.frame(peaks = rownames(Motifs(scATAC.data)@data),
originType = All.peakAnno@anno$annotation,
peakType = peakAnno.info$annotation,
distanceToTSS = peakAnno.info$distanceToTSS,
SYMBOL = peakAnno.info$SYMBOL)
saveRDS(peak.info, file = "4.Peak/peak.annotation.simple.ChIPseeker.rds")
promoter <- getPromoters(TxDb=txdb, upstream=3000, downstream=3000)
tagMatrix <- getTagMatrix(All.gr, windows=promoter)
pdf("4.Peak/Annotation/All.peakAnnotation.pdf")
plotAnnoPie(All.peakAnno)
plotAnnoBar(All.peakAnno)
vennpie(All.peakAnno) #some annotation overlap
upsetplot(All.peakAnno, vennpie=TRUE)
#Visualize distribution of TF-binding loci relative to TSS
plotDistToTSS(All.peakAnno, title="Distribution of transcription factor-binding loci\nrelative to TSS")
tagHeatmap(tagMatrix, xlim=c(-3000, 3000), color="#4DBBD5")
plotAvgProf(tagMatrix, xlim=c(-3000, 3000), xlab="Genomic Region (5'->3')", ylab = "Read Count Frequency")
plotAvgProf(tagMatrix, xlim=c(-3000, 3000), conf = 0.95, resample = 1000)
dev.off()
#######################################annotated the cell-type specific peaks
cellType.sig.pos.DARs <- readRDS("4.Peak/cellType.sig.pos.DARs.rds")
cellType.sig.pos.gr <- StringToGRanges(unique(cellType.sig.pos.DARs$genomicRegion)) # 8797 DAR peaks
DAR.Anno <- annotatePeak(cellType.sig.pos.gr, tssRegion=c(-3000, 3000), TxDb = txdb, annoDb="org.Hs.eg.db")
idents <- unique(cellType.sig.pos.DARs$cellType)
cellType.gr.list <- lapply(idents, function(x){
idx <- which(cellType.sig.pos.DARs$cellType == x)
gr <- StringToGRanges(cellType.sig.pos.DARs$genomicRegion[idx])
})
names(cellType.gr.list) <- idents
#annotated DAR for each cell type
DAR.anno.list <- lapply(cellType.gr.list, function(x){
DAR.cell <- annotatePeak(x, tssRegion=c(-3000, 3000), TxDb = txdb, annoDb="org.Hs.eg.db")
return(DAR.cell)
})
promoter <- getPromoters(TxDb=txdb, upstream=3000, downstream=3000)
tagMatrix <- getTagMatrix(cellType.sig.pos.gr, windows=promoter)
pdf("4.Peak/Annotation/cellType.DAR.annotation.pdf")
tagHeatmap(tagMatrix, xlim=c(-3000, 3000), color="#4DBBD5")
plotAvgProf(tagMatrix, xlim=c(-3000, 3000), xlab="Genomic Region (5'->3')", ylab = "Read Count Frequency")
plotAvgProf(tagMatrix, xlim=c(-3000, 3000), conf = 0.95, resample = 1000)
plotAnnoPie(DAR.Anno)
plotAnnoBar(DAR.Anno)
vennpie(DAR.Anno) #some annotation overlap
upsetplot(DAR.Anno, vennpie=TRUE)
#Visualize distribution of TF-binding loci relative to TSS
plotDistToTSS(DAR.Anno, title="Distribution of transcription factor-binding loci\nrelative to TSS")
plotAnnoBar(DAR.anno.list)
plotDistToTSS(DAR.anno.list)
dev.off()
############################# write DARs to bed files
# write all peaks to file to serve as background set:
DefaultAssay(scATAC.data) <- "Peaks"
peak_ranges <- StringToGRanges(rownames(scATAC.data)) %>% sort
write.table(as.data.frame(peak_ranges)[,1:3], file='4.Peak/bed/allPeaks.bed', row.names=F, col.names=F, sep='\t', quote=F)
########### each cell type
All.DARs <- readRDS("4.Peak/cellType.all.DARs.rds") # 224807 region
idents <- levels(All.DARs$cellType)
res < sapply(idents, function(x){
cat("writing ", x, "\n")
DARs.up <- All.DARs %>% dplyr::filter(cellType == x & avg_log2FC >= 0.25 & p_val_adj < 0.05)
DARs.down <- All.DARs %>% dplyr::filter(cellType == x & avg_log2FC < -0.25 & p_val_adj < 0.05)
if(nrow(DARs.up) >= 25){
DARs.up.info <- peakAnno.info.frame[match(DARs.up$genomicRegion, peakAnno.info.frame$id),]
# distal
distal.peak.up <- DARs.up.info[which(DARs.up.info$annotation == "Distal"),]
write.table(distal.peak.up[,1:3], file = paste0('4.Peak/bed/', x,'_up_distalPeaks.bed'), row.names=F, col.names=F, sep='\t', quote=F)
cat("Distal Up: ", nrow(distal.peak.up), "\n")
# proximal
proximal.peak.up <- DARs.up.info[which(DARs.up.info$annotation != "Distal"),]
write.table(proximal.peak.up[,1:3], file = paste0('4.Peak/bed/', x,'_up_proximalPeaks.bed'), row.names=F, col.names=F, sep='\t', quote=F)
cat("proximal Up: ", nrow(proximal.peak.up), "\n")
}
if(nrow(DARs.down) >= 25){
DARs.down.info <- peakAnno.info.frame[match(DARs.down$genomicRegion, peakAnno.info.frame$id),]
# distal
distal.peak.down <- DARs.down.info[which(DARs.down.info$annotation == "Distal"),]
write.table(distal.peak.down[,1:3], file = paste0('4.Peak/bed/', x,'_down_distalPeaks.bed'), row.names=F, col.names=F, sep='\t', quote=F)
cat("Distal Down: ", nrow(distal.peak.down), "\n")
# proximal
proximal.peak.down <- DARs.down.info[which(DARs.down.info$annotation != "Distal"),]
write.table(proximal.peak.down[,1:3], file = paste0('4.Peak/bed/', x,'_down_proximalPeaks.bed'), row.names=F, col.names=F, sep='\t', quote=F)
cat("proximal Down: ", nrow(proximal.peak.down), "\n")
}
return("Finish!")
})
##rGREAT enrichment analysis
source(file = "/home/longzhilin/Analysis_Code/PathwayEnrichment/Great.enrich.R")
idents <- levels(scATAC.data)
bg <- read.table("4.Peak/bed/allPeaks.bed", sep = "\t", stringsAsFactors = F)
pdf("4.Peak/bed/GREAT.enrich.pdf")
res <- lapply(idents, function(x){
## up regulate
up.distal.bed <- tryCatch({
read.table(paste0("4.Peak/bed/", x, "_up_distalPeaks.bed"), sep = "\t", stringsAsFactors = F)}, error = function(e){return(NULL)})
if(!is.null(up.distal.bed)){
cat("Analysis: ", x, " up distal region...\n")
up_distalPeaks_enrich <- Great.enrich(gr = up.distal.bed, bg = bg, title = paste0(x, "_up_distalPeaks"), Type = "GO Biological Process")
}else{
up_distalPeaks_enrich <- NULL
}
up.proximal.bed <- tryCatch({
read.table(paste0("4.Peak/bed/", x, "_up_proximalPeaks.bed"), sep = "\t", stringsAsFactors = F)}, error = function(e){return(NULL)})
if(!is.null(up.proximal.bed)){
cat("Analysis: ", x, " up proximal region...\n")
up_proximalPeaks_enrich <- Great.enrich(gr = up.proximal.bed, bg = bg, title = paste0(x, "_up_proximalPeaks"), Type = "GO Biological Process")
}else{
up_proximalPeaks_enrich <- NULL
}
## down regulate
down.distal.bed <- tryCatch({
read.table(paste0("4.Peak/bed/", x, "_down_distalPeaks.bed"), sep = "\t", stringsAsFactors = F)}, error = function(e){return(NULL)})
if(!is.null(down.distal.bed)){
cat("Analysis: ", x, " down distal region...\n")
down_distalPeaks_enrich <- Great.enrich(gr = down.distal.bed, bg = bg, title = paste0(x, "_down_distalPeaks"), Type = "GO Biological Process")
}else{
down_distalPeaks_enrich <- NULL
}
down.proximal.bed <- tryCatch({
read.table(paste0("4.Peak/bed/", x, "_down_proximalPeaks.bed"), sep = "\t", stringsAsFactors = F)}, error = function(e){return(NULL)})
if(!is.null(down.proximal.bed)){
cat("Analysis: ", x, " down proximal region...\n")
down_proximalPeaks_enrich <- Great.enrich(gr = down.proximal.bed, bg = bg, title = paste0(x, "_down_proximalPeaks"), Type = "GO Biological Process")
}else{
down_proximalPeaks_enrich <- NULL
}
return(list(up_distalPeaks_enrich = up_distalPeaks_enrich, up_proximalPeaks_enrich = up_proximalPeaks_enrich,
down_distalPeaks_enrich = down_distalPeaks_enrich, down_proximalPeaks_enrich = down_proximalPeaks_enrich))
})
dev.off()
names(res) <- idents
saveRDS(res, file = "4.Peak/bed/GREAT.enrichment.rds")
library(openxlsx)
write.xlsx(res$Tumor, file = "4.Peak/bed/GREAT.Tumor.xlsx", sheetName = names(res$Tumor), rowNames = F)
####plot --- tumor.up
tumor.up.proximal <- res$Tumor$up_proximalPeaks_enrich
tumor.up.distal <- res$Tumor$up_distalPeaks_enrich
pdf("4.Peak/bed/GREAT.Tumor.selection.pdf", height = unit(5, "inches"))
p <- ggbarplot(tumor.up.proximal, x = "wrap", y = "Hyper_Fold_Enrichment", fill = "grey", color = "grey", width = 0.4, ylab = "Fold Enrichment", xlab = "", orientation = "horiz", sort.val = c("asc"))+theme(legend.position="none")
print(p)
p <- ggbarplot(tumor.up.distal, x = "wrap", y = "Hyper_Fold_Enrichment", fill = "grey", color = "grey", width = 0.4, ylab = "Fold Enrichment", xlab = "", orientation = "horiz", sort.val = c("asc"))+theme(legend.position="none")
print(p)
dev.off()