--- a +++ b/RNA-seq/AnalysisPipeline/5.1.Immune.CD8T.R @@ -0,0 +1,424 @@ +#' @description: analysis CD8+ T population + +library(Seurat) +library(harmony) +library(clustree) +library(ggpubr) +library(dplyr) +library(tidyverse) +library(patchwork) +library(ComplexHeatmap) +library(circlize) +library(vegan) +library(openxlsx) +set.seed(101) +library(future) +plan("multiprocess", workers = 5) +options(future.globals.maxSize = 50000 * 1024^2) # set 50G RAM +setwd(dir = "/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA") +source(file = "/home/longzhilin/Analysis_Code/Visualization/colorPalettes.R") +source(file = "/home/longzhilin/Analysis_Code/SingleCell/scRNA.Integrate.multipleSample.R") +source(file = "/home/longzhilin/Analysis_Code/SingleCell/variableFeatureSelection.R") +source(file = "/home/longzhilin/Analysis_Code/code/ratio.plot.R") + +data.merge <- readRDS("data.merge.pro.rds") +cell.Type <- "CD8+ T cell" +sub.scRNA <- subset(data.merge, subset = cellType_low == cell.Type) +DefaultAssay(sub.scRNA) <- "RNA" +sub.scRNA <- DietSeurat(sub.scRNA, assays = "RNA") +# observe the batch effect +# sub.scRNA <- SCTransform(sub.scRNA, vars.to.regress = c("nCount_RNA", "percent.mt"), verbose = FALSE) +# sub.scRNA <- RunPCA(sub.scRNA, npcs = 30, verbose = FALSE) %>% +# RunUMAP(reduction = "pca", dims = 1:30, verbose = FALSE) %>% +# FindNeighbors(reduction = "pca", dims = 1:30, verbose = FALSE) %>% +# FindClusters(resolution = seq(0.2, 1.2, by = 0.1), verbose = FALSE) + +# split the dataset into a list of two seurat objects (stim and CTRL) +sub.list <- SplitObject(sub.scRNA, split.by = "orig.ident") +sub.list <- lapply(X = sub.list, FUN = function(x) { + x <- SCTransform(x, vars.to.regress = c("nCount_RNA", "percent.mt"), verbose = FALSE) +}) +sub.scRNA <- merge(sub.list[[1]], y = sub.list[2:length(sub.list)], project = "Renal_CD8") +DefaultAssay(sub.scRNA) <- "SCT" +seurat.features.SCT <- SelectIntegrationFeatures(object.list = sub.list, nfeatures = 3000) +VariableFeatures(sub.scRNA) <- seurat.features.SCT +pdf("5.Immune/CD8T/SCT.Harmony.Integration.PC20.pdf") +sub.scRNA.harmony <- Harmony.integration.reduceDimension(seurat.object = sub.scRNA, assay = "SCT", set.resolutions = seq(0.2, 1.2, by = 0.1), PC = 20, npcs = 30) +dev.off() +sub.scRNA.harmony$seurat_clusters <- sub.scRNA.harmony$SCT_snn_res.0.5 +Idents(sub.scRNA.harmony) <- sub.scRNA.harmony$seurat_clusters +DefaultAssay(sub.scRNA.harmony) <- "RNA" +sub.scRNA.harmony <- NormalizeData(sub.scRNA.harmony, verbose = FALSE) +sub.scRNA.harmony <- ScaleData(sub.scRNA.harmony, verbose = FALSE, vars.to.regress = c("nCount_RNA", "percent.mt"), features = rownames(sub.scRNA.harmony)) +saveRDS(sub.scRNA.harmony, file = "5.Immune/CD8T/sub.scRNA.harmony.rds") + +####-------------------------------------------------1.the characteristics of each cluster +#### 1.marker +features <- c("CD3E", "CD3D", "CD8A", "APOE", "C1QC", "PLVAP", "CD4", "FGFBP2", "KLRD1") +pdf("5.Immune/CD8T/markerExpression.pdf") +VlnPlot(sub.scRNA.harmony, features = c("CD3D", "CD3E", "C1QC", "APOE"), ncol = 2) +FeaturePlot(sub.scRNA.harmony, features = c("CD3D", "CD3E", "C1QC", "APOE"), cols = c("lightgrey", "red"), ncol = 2) +VlnPlot(sub.scRNA.harmony, features = c("CD8A", "CD8B", "PLVAP", "ESM1"), ncol = 2) +FeaturePlot(sub.scRNA.harmony, features = c("CD8A", "CD8B", "PLVAP", "ESM1"), cols = c("lightgrey", "red"), ncol = 2) +VlnPlot(sub.scRNA.harmony, features = c("PRF1", "IFNG", "TOX", "PDCD1"), ncol = 2) +FeaturePlot(sub.scRNA.harmony, features = c("PRF1", "IFNG", "TOX", "PDCD1"), cols = c("lightgrey", "red"), ncol = 2) +dev.off() + +pdf("5.Immune/CD8T/cluster.markerExpression.dot.pdf", height = 3, width = 5) +DotPlot(sub.scRNA.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "seurat_clusters", dot.scale = 3.5) + xlab("") + ylab("Cluser") + RotatedAxis() + theme(axis.text.x = element_text(size = 8)) + theme(axis.text.y = element_text(size = 8)) +DotPlot(sub.scRNA.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "seurat_clusters", dot.scale = 3.5) + xlab("") + ylab("Cluser") + RotatedAxis() + NoLegend() + theme(axis.text.x = element_text(size = 8)) + theme(axis.text.y = element_text(size = 8)) +dev.off() + +pdf("5.Immune/CD8T/cluster.pdf") +DimPlot(object = sub.scRNA.harmony, reduction = 'umap', pt.size = 1.5, label = TRUE, group.by = "orig.ident") +DimPlot(object = sub.scRNA.harmony, reduction = 'tsne', pt.size = 1.5, label = TRUE, group.by = "orig.ident") +DimPlot(object = sub.scRNA.harmony, reduction = 'tsne', pt.size = 1.5, label = TRUE, group.by = "seurat_clusters")+NoLegend() +DimPlot(object = sub.scRNA.harmony, reduction = 'umap', pt.size = 1.5, label = TRUE, group.by = "seurat_clusters")+NoLegend() +dev.off() + +##Plot--- cell number +pdf("5.Immune/CD8T/cluster.ratio.pdf", height = 4, width = 6) +ratio.plot(seurat.object = sub.scRNA.harmony, id.vars1 = "orig.ident", id.vars2 = "seurat_clusters", angle = 60) +dev.off() + +####-------------------------------------------------2.Filter out mixed cell populations +sub.scRNA.harmony <- subset(sub.scRNA.harmony, subset = seurat_clusters %in% 0:3) # 4078 cells +sub.scRNA.harmony$seurat_clusters <- as.character(sub.scRNA.harmony$seurat_clusters) +#定义cellType +sub.scRNA.harmony$cellType2 <- paste0("C", as.numeric(sub.scRNA.harmony$seurat_clusters)+1) +sub.scRNA.harmony$cellType2 <- factor(sub.scRNA.harmony$cellType2, levels = c("C1", "C2", "C3", "C4")) + +cellType3 <- sub.scRNA.harmony$cellType2 +cellType3 <- gsub("^C1$", "Exhausted IEG", cellType3) +cellType3 <- gsub("^C2$", "Tissue-resident.C1", cellType3) +cellType3 <- gsub("^C3$", "Exhaustion", cellType3) +cellType3 <- gsub("^C4$", "Tissue-resident.C2", cellType3) +sub.scRNA.harmony$cellType3 <- factor(cellType3, levels = c("Tissue-resident.C1", "Tissue-resident.C2", "Exhausted IEG", "Exhaustion")) +Idents(sub.scRNA.harmony) <- sub.scRNA.harmony$cellType3 +saveRDS(sub.scRNA.harmony, file = "5.Immune/CD8T/sub.scRNA.harmony.pro.rds") + +cellType.colors <- c("#F8766D", "#7CAE00", "#00BFC4", "#C77CFF") + +DefaultAssay(sub.scRNA.harmony) <- "RNA" +pdf("5.Immune/CD8T/cluster.pro.pdf") +DimPlot(object = sub.scRNA.harmony, reduction = 'umap', pt.size = 1.5, label = TRUE, group.by = "orig.ident") +DimPlot(object = sub.scRNA.harmony, reduction = 'tsne', pt.size = 1.5, label = TRUE, group.by = "orig.ident") +DimPlot(object = sub.scRNA.harmony, reduction = 'tsne', pt.size = 1.5, label.size = 6, label = TRUE, group.by = "seurat_clusters")+NoLegend() +DimPlot(object = sub.scRNA.harmony, reduction = 'umap', pt.size = 1.5, label.size = 6, label = TRUE, group.by = "seurat_clusters")+NoLegend() +dev.off() + +DefaultAssay(sub.scRNA.harmony) <- "RNA" +pdf("5.Immune/CD8T/cellType.pdf") +DimPlot(object = sub.scRNA.harmony, reduction = 'umap', pt.size = 1.5, label.size = 6, label = TRUE, group.by = "cellType")+NoLegend() +DimPlot(object = sub.scRNA.harmony, reduction = 'umap', pt.size = 1.5, label.size = 6, label = TRUE, group.by = "cellType") +dev.off() + +pdf("5.Immune/CD8T/cellType.ratio.pdf", height = 4, width = 6) +ratio.plot(seurat.object = sub.scRNA.harmony, id.vars1 = "orig.ident", id.vars2 = "cellType", angle = 60) +ratio.plot(seurat.object = sub.scRNA.harmony, id.vars1 = "orig.ident", id.vars2 = "cellType", angle = 60) +dev.off() + +#### singleR +library(SingleR) +ImmGen.se <- ImmGenData() +DatabaseImmuneCell.se <- DatabaseImmuneCellExpressionData() +NovershternHematopoietic.se <- NovershternHematopoieticData() +MonacoImmune.se <- MonacoImmuneData() +singler.ImmGen.predict.cluster <- SingleR(test = sub.scRNA.harmony@assays$RNA@data, + ref = ImmGen.se, + labels = ImmGen.se$label.fine, + clusters = as.character(sub.scRNA.harmony@meta.data$seurat_clusters)) +singler.ImmGen.predict.cluster$labels <- rownames(singler.ImmGen.predict.cluster) +singler.DatabaseImmuneCell.predict.cluster <- SingleR(test = sub.scRNA.harmony@assays$RNA@data, + ref = DatabaseImmuneCell.se, + labels = DatabaseImmuneCell.se$label.fine, + clusters = as.character(sub.scRNA.harmony@meta.data$seurat_clusters)) +singler.DatabaseImmuneCell.predict.cluster$labels <- rownames(singler.DatabaseImmuneCell.predict.cluster) +singler.NovershternHematopoietic.predict.cluster <- SingleR(test = sub.scRNA.harmony@assays$RNA@data, + ref = NovershternHematopoietic.se, + labels = NovershternHematopoietic.se$label.fine, + clusters = as.character(sub.scRNA.harmony@meta.data$seurat_clusters)) +singler.NovershternHematopoietic.predict.cluster$labels <- rownames(singler.NovershternHematopoietic.predict.cluster) +singler.MonacoImmune.predict.cluster <- SingleR(test = sub.scRNA.harmony@assays$RNA@data, + ref = MonacoImmune.se, + labels = MonacoImmune.se$label.fine, + clusters = as.character(sub.scRNA.harmony@meta.data$seurat_clusters)) +singler.MonacoImmune.predict.cluster$labels <- rownames(singler.MonacoImmune.predict.cluster) +pdf("5.Immune/CD8T/singleR.predicted.score.pdf") +plotScoreHeatmap(singler.ImmGen.predict.cluster) +plotScoreHeatmap(singler.DatabaseImmuneCell.predict.cluster) +plotScoreHeatmap(singler.NovershternHematopoietic.predict.cluster) +plotScoreHeatmap(singler.MonacoImmune.predict.cluster) +dev.off() + +####-------------------------------------------------3.marker expression anlalysis +features <- c("LEF1", "IL7R", "CCR7", "SELL", "TCF7", "TGFB1", "CD44", "CD69", "ZNF683", "ITGAE", "ITGA1", + "TNF", "IFNG", "KLRG1", "GZMA", "GZMH", + "NR4A1", "JUNB", "FOS", "ATF3", "DNAJB1", "HSPA1A", "EOMES", + "GZMK", "GZMB", "PRF1", "TNFRSF9", "TOX", "ENTPD1", "PDCD1", "CTLA4", "TIGIT", "LAG3", "HAVCR2") +pdf("5.Immune/CD8T/cellType.markerExpression.dot.pdf", height = 2) +DotPlot(sub.scRNA.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + xlab("") + ylab("") + theme(axis.text.x = element_text(size = 8, angle = 90)) + theme(axis.text.y = element_text(size = 8)) +DotPlot(sub.scRNA.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + xlab("") + ylab("") + NoLegend() + theme(axis.text.x = element_text(size = 8, angle = 90)) + theme(axis.text.y = element_text(size = 8)) +dev.off() +pdf("5.Immune/CD8T/cellType.markerExpression.dot.test.pdf", height = 4) +DotPlot(sub.scRNA.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + xlab("") + ylab("") + theme(axis.text.x = element_text(size = 8, angle = 90)) + theme(axis.text.y = element_text(size = 8)) +DotPlot(sub.scRNA.harmony, features = features, cols = c("#1e90ff", "#F15F30"), group.by = "cellType", dot.scale = 3.5) + xlab("") + ylab("") + NoLegend() + theme(axis.text.x = element_text(size = 8, angle = 90)) + theme(axis.text.y = element_text(size = 8)) +dev.off() +avg.expression <- AverageExpression(sub.scRNA.harmony, features, assays = "RNA", slot = "data") +avg.expression.scale <- scale(t(avg.expression$RNA)) +avg.expression.max <- decostand(avg.expression$RNA, "range", 1) +pdf("5.Immune/CD8T/cellType.markerExpression.heatmap.pdf") +Heatmap(t(avg.expression.scale), cluster_rows = F, show_column_dend = F, name = "RNA expression", + width = unit(2, "cm"), height = unit(8, "cm"), + row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8)) +Heatmap(avg.expression.max, cluster_rows = F, show_column_dend = F, name = "RNA expression", + width = unit(2, "cm"), height = unit(8, "cm"), + row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8)) +dev.off() + +pdf("5.Immune/CD8T/markerExpression.pro.pdf") +VlnPlot(sub.scRNA.harmony, features = c("LEF1", "IL7R", "TCF7", "CD44"), ncol = 2) +FeaturePlot(sub.scRNA.harmony, features = c("LEF1", "IL7R", "TCF7", "CD44"), cols = c("lightgrey", "red"), ncol = 2) +VlnPlot(sub.scRNA.harmony, features = c("CD69", "ZNF683", "ITGA1", "ITGAE"), ncol = 2) +FeaturePlot(sub.scRNA.harmony, features = c("CD69", "ZNF683", "ITGA1", "ITGAE"), cols = c("lightgrey", "red"), ncol = 2) +VlnPlot(sub.scRNA.harmony, features = c("JUNB", "FOS", "DNAJB1", "HSPA1A"), ncol = 2) +FeaturePlot(sub.scRNA.harmony, features = c("JUNB", "FOS", "DNAJB1", "HSPA1A"), cols = c("lightgrey", "red"), ncol = 2) +VlnPlot(sub.scRNA.harmony, features = c("PDCD1", "TOX", "ENTPD1", "HAVCR2"), ncol = 2) +FeaturePlot(sub.scRNA.harmony, features = c("PDCD1", "TOX", "ENTPD1", "HAVCR2"), cols = c("lightgrey", "red"), ncol = 2) +dev.off() + +# vlnplot +pdf("5.Immune/CD8T/markerExpression.vlnplot.pdf", width = 5) +p1 <- VlnPlot(sub.scRNA.harmony,features = features[1:17], group.by="cellType", same.y.lims=T,flip = T, stack = T) & xlab("") & ylab("Log-normalized expression") & theme(legend.position="none", axis.text.x = element_text(angle = 90, vjust = 0.5)) +p2 <- VlnPlot(sub.scRNA.harmony,features = features[18:34], group.by="cellType", same.y.lims=T,flip = T, stack = T) & xlab("") & ylab("Log-normalized expression") & theme(legend.position="none", axis.text.x = element_text(angle = 90, vjust = 0.5)) +ggarrange(p1,p2,ncol=2) +dev.off() +features <- c("CCR7","TCF7","PDCD1","HAVCR2","TOX","CXCR6","XCL1","GZMB","GZMK","IFNG") + +####-------------------------------------------------4.Difference analysis +DefaultAssay(sub.scRNA.harmony) <- "RNA" +cluster.DE <- FindAllMarkers(sub.scRNA.harmony, + group.by = "cellType", logfc.threshold = 0, min.pct = 0.1, + test.use = "MAST", latent.vars = "orig.ident") +idents <- levels(sub.scRNA.harmony) +saveFormat <- lapply(idents, function(x){ + index <- which(cluster.DE$cluster == x) + DEGs <- cluster.DE[index,] + DEGs.up <- DEGs %>% filter(avg_log2FC>0) %>% arrange(desc(avg_log2FC)) + DEGs.down <- DEGs %>% filter(avg_log2FC<0) %>% arrange(avg_log2FC) + DEGs <- rbind(DEGs.up, DEGs.down) + return(DEGs) +}) +write.xlsx(saveFormat, file = "5.Immune/CD8T/cellType.DE.xlsx", sheetName = idents, rowNames = F) +saveRDS(cluster.DE, file = "5.Immune/CD8T/cellType.DE.rds") +top.genes <- cluster.DE %>% filter(p_val_adj<0.05 & avg_log2FC>0.25) %>% group_by(cluster) %>% top_n(n = 5, wt = avg_log2FC) +pdf("5.Immune/CD8T/cellType.topgenes.pdf") +DoHeatmap(sub.scRNA.harmony, features = unique(top.genes$gene), size = 2) + NoLegend() +dev.off() + +##-- Functional enrichment analysis +DEGs <- lapply(saveFormat, function(x){ + x <- x %>% filter(p_val_adj<0.05 & avg_log2FC>0.5) %>% arrange(desc(avg_log2FC)) + return(x) +}) +names(DEGs) <- idents +write.xlsx(DEGs, file = "5.Immune/CD8T/cellType.DEGs.xlsx", sheetName = idents, rowNames = F) +saveRDS(DEGs, file = "5.Immune/CD8T/cellType.DEGs.rds") + +DEGs <- lapply(DEGs, function(x){ + return(x$gene) +}) +source("/home/longzhilin/Analysis_Code/PathwayEnrichment/clusterProfiler.enricher.R") +pdf("5.Immune/CD8T/program.pathway.enrichment.pdf") +res <- lapply(names(DEGs), function(x){ + y <- DEGs[[x]] + res <- cluterProfiler.enricher(gene = y, geneType = "SYMBOL", db.type = "MsigDB", saveDir = paste0(getwd(),"/5.Immune/CD8T/cluterProfiler_MsigDB"), + title = x, qvalueCutoff = 0.05, pvalueCutoff = 0.05) + # gene ratio + res <- res$em.res.genesymbol@result %>% filter(p.adjust<0.05) #fdr adjust + pathway.geneNum <- unlist(strsplit(res$BgRatio, "/"))[seq(1, nrow(res),by=2)] + gene.ratio <- as.numeric(res$Count)/as.numeric(pathway.geneNum) + res$gene.ratio <- gene.ratio + return(res) +}) +dev.off() +names(res) <- names(DEGs) +write.xlsx(res, file = "5.Immune/CD8T/cluterProfiler_MsigDB/clusterProfiler.enricher.result.xlsx", sheetName = idents, rowNames = F) +#### show cluster profiler result +wrapText <- function(x, len) { + sapply(x, function(y) paste(strwrap(y, len), collapse = "\n"), USE.NAMES = FALSE) +} +library(ggthemes) +enrich.pathways <- c(res[[1]]$ID[c(1, 12, 20, 32, 47, 48, 51)], + res[[2]]$ID[c(1, 2, 7, 11, 12, 35, 42, 101)], + res[[3]]$ID[c(1, 3, 8, 16, 17, 25, 29, 32, 41, 66)], + res[[4]]$ID[c(12, 16, 23, 38, 48, 53, 60, 97, 186)]) +enrich.pathways <- unique(enrich.pathways) +enrich <- lapply(res, function(x){ + idx <- which(x$ID %in% enrich.pathways) + return(x[idx, c("ID", "p.adjust", "Count")]) +}) +names(enrich) <- names(DEGs) +enrich <- lapply(names(enrich), function(x){ + enrich[[x]]$Type <- rep(x, nrow(enrich[[x]])) + return(enrich[[x]]) +}) +enrich.res <- Reduce(function(x,y) rbind(x,y), enrich) +rownames(enrich.res) <- NULL + +enrich.res$p.adjust <- -log10(enrich.res$p.adjust) +enrich.res$wrap <- wrapText(enrich.res$ID, 45) +pdf("5.Immune/CD8T/cluterProfiler_MsigDB/cluterProfiler_MsigDB.enrichment.pdf") +p1 <- ggplot(enrich.res, + aes(x = Type, + y = wrap, + size = Count, + color = p.adjust, + fill = p.adjust)) +p2 <- p1 + guides(color=FALSE) + geom_point(shape = 21, alpha = 0.7) + theme_few() + scale_color_gradient(low = "#FF9375", high = "red") + scale_fill_gradient(low = "#FF9375", high = "red", breaks = c(1.3, 2, 3, 4, 5, 6), labels = c(0.05, 0.01, 0.001, 0.0001, 0.00001, 0.000001)) +p2 <- p2 + theme(axis.text.x = element_text(angle = 45,vjust = 1,hjust = 1, size = 8), axis.text.y = element_text(size = 8)) + xlab("") + ylab("") +print(p2) + +#heatmap +pathway.p <- enrich.res[, c("ID", "Type", "p.adjust")] +pathway.data <- pivot_wider(pathway.p, names_from = "Type", values_from = "p.adjust") +pathway.data <- as.data.frame(pathway.data) +rownames(pathway.data) <- pathway.data$ID +pathway.data <- as.data.frame(pathway.data[,-1]) +cols <- colorRamp2(c(0, 7.5, 15), c("white", "#ffff66", "red")) +Heatmap(pathway.data, name = "-log10(FDR)", show_column_dend = F, show_row_dend = F, col = cols, + na_col = "#f2f3f4", border = "grey", border_gp = gpar(col = "grey"), rect_gp = gpar(col = "grey"), + width = unit(3, "cm"), height = unit(10, "cm"), cluster_rows = F, cluster_columns = F, + row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8)) +dev.off() + +##### TCGA survival +source(file = "/home/longzhilin/Analysis_Code/code/analysis.diff.survival.TCGA.R") +DESeq2.normalized_counts <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/DESeq2.normalized_counts.rds") +DESeq2.normalized_counts <- log2(DESeq2.normalized_counts+1) +DESeq2.result <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/DESeq2.result.rds") +clin.data <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result/clin.data.rds") +pdf("5.Immune/CD8T/DEGs.survival.pdf") +TCGA.Tissue.resident.C1 <- analysis.diff.survival.TCGA(interest.gene = DEGs[["Tissue-resident.C1"]], diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, main = "Tissue-resident.C1", Box.plot = F, meta.signature = T, single.signature = F) +TCGA.Tissue.resident.C2 <- analysis.diff.survival.TCGA(interest.gene = DEGs[["Tissue-resident.C2"]], diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, main = "Tissue-resident.C2", Box.plot = F, meta.signature = T, single.signature = F) +TCGA.Exhausted.IEG <- analysis.diff.survival.TCGA(interest.gene = DEGs[["Exhausted IEG"]], diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, main = "Exhausted IEG", Box.plot = F, meta.signature = T, single.signature = F) +TCGA.Exhaustion <- analysis.diff.survival.TCGA(interest.gene = DEGs[["Exhaustion"]], diff.gene.pro = DESeq2.result, exp.data.process = DESeq2.normalized_counts, clin.data = clin.data, EnhancedVolcano.plot = F, main = "Exhausted", Box.plot = F, meta.signature = T, single.signature = F) +dev.off() + +##### ICB survial +library(ggpubr) +source(file = "/home/longzhilin/Analysis_Code/SurvivalAnalysis/Cox.function.R") +source(file = "/home/longzhilin/Analysis_Code/code/RCC.ICB.analysis.R") +normalized_expression <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/ICB.therapy/normalized_expression.rds") +patient.info.RNA <- readRDS("/data/active_data/lzl/RenalTumor-20200713/Data/ICB.therapy/patient.info.RNA.rds") + +patient.info.RNA$Sex <- gsub("^F|FEMALE|Female$", 0, patient.info.RNA$Sex) +patient.info.RNA$Sex <- gsub("^M|Male|MALE$", 1, patient.info.RNA$Sex) +patient.info.RNA$Tumor_Sample_Primary_or_Metastasis <- gsub("PRIMARY", 0, patient.info.RNA$Tumor_Sample_Primary_or_Metastasis) +patient.info.RNA$Tumor_Sample_Primary_or_Metastasis <- gsub("METASTASIS", 1, patient.info.RNA$Tumor_Sample_Primary_or_Metastasis) + +pdf("5.Immune/CD8T/DEGs.ICB.survival.pdf") +ICB.res <- RCC.icb.analysis(signature.list = DEGs, expresionMatrix = normalized_expression, clincal.info = patient.info.RNA) +dev.off() + +####-------------------------------------------------5.Define cell state based on signature +## 1. load signature +T.signature1 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/Tsignature.Braun.CancerCell.txt", header = T, stringsAsFactors = F, sep = "\t") +T.signature2 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/CD8.Exhausted(anti-pd1).Bi.2021.CancerCell&Sade-Feldman et al. 2018.Cell.txt", header = T, stringsAsFactors = F, sep = "\t") +T.signature3 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/FunctionalStateOfTcell.Mathewson.2021.Cell.txt", header = T, stringsAsFactors = F, sep = "\t") +T.signature4 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/ImmuneSignatureGeneSet.T.Chung.2017.NatureComm.txt", header = T, stringsAsFactors = F, sep = "\t") +T.signature5 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/CD8.Tstate.vanderLeun.2020.NatureReviewsCancer.txt", header = T, stringsAsFactors = F, sep = "\t") +T.signature6 <- read.table("/data/ExtraDisk/sdd/longzhilin/Data/signatureGeneSet/Immune/CD8.Resident&Exhausted.MomenehForoutan.2020.BioRXiv.txt", header = T, stringsAsFactors = F, sep = "\t") +signature.genes <- rbind(T.signature1, T.signature2) +signature.genes <- rbind(signature.genes, T.signature3) +signature.genes <- rbind(signature.genes, T.signature4) +signature.genes <- rbind(signature.genes, T.signature5) +signature.genes <- rbind(signature.genes, T.signature6) +signature.genes <- signature.genes[which(signature.genes$Type %in% c("Naive", "Effector memory", "Central memory", "Res", "Exh", + "Cell_stress", "Cytotoxicity Signature", "Exhaustion", + "Terminal_differentiation", "Progenitor Exhausted CD8", "Terminally Exhausted CD8")),] +signature.genes$Type <- gsub("Cytotoxicity Signature", "Cytotoxic", signature.genes$Type) +signature.genes$Type <- gsub("_", " ", signature.genes$Type) +signature.genes$Type <- gsub(" CD8", "", signature.genes$Type) +signature.genes$Type <- gsub("Exhausted", "Exhaustion", signature.genes$Type) +signature.genes$Type <- gsub("Terminally", "Terminal", signature.genes$Type) +## 2.1 VISION method +source(file = "/home/longzhilin/Analysis_Code/SingleCell/vision_seurat.R") +source(file = "/home/longzhilin/Analysis_Code/SingleCell/vision.plot.R") +vision_state <- vision_seurat(seurat.object = sub.scRNA.harmony, customize.signature = signature.genes, mc.cores = 36, min_signature_genes = 4) +saveRDS(vision_state, file = "5.Immune/CD8T/vision_signatureScore.rds") + +pdf("5.Immune/CD8T/vision_signatureScore.pdf") +res <- vision.plot(vision.obj = vision_state, groupName = "cellType") +res <- vision.plot(vision.obj = vision_state, groupName = "cellType", signature.names = c("Progenitor Exhaustion", "Terminal Exhaustion"), title = "Progenitor & Terminally") +# heatmap +vision.score <- as.data.frame(vision_state@SigScores) +vision.score.mean <- apply(vision.score, 2, function(x){ + score <- tapply(x, sub.scRNA.harmony$cellType, mean) + return(score) +}) +p <- Heatmap(t(vision.score.mean), width = unit(6, "cm"), height = unit(6, "cm"), name = "Signature score", + show_row_dend = F, show_column_dend = F, row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8)) +print(p) +vision.score.mean.scale <- scale(vision.score.mean) # 比较某个状态在各个细胞类型的情况 +p <- Heatmap(t(vision.score.mean.scale), width = unit(6, "cm"), height = unit(6, "cm"), name = "Signature score", + show_row_dend = F, show_column_dend = F, row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8)) +print(p) + +# violin +vision.score$group <- sub.scRNA.harmony$cellType +plot.list <- lapply(colnames(vision.score), function(x){ + my_comparisons <- as.list(as.data.frame(combn(levels(sub.scRNA.harmony$cellType),2))) + a <- vision.score[, c(x, "group")] + names(a) <- c("Signature score", "group") + p <- ggviolin(a, x = "group", y = "Signature score", title = x, color = "black", alpha = 0.8, fill = "group", add = "boxplot", add.params = list(fill = "white", size = 0.05)) + + xlab("") + rotate_x_text(angle = 45, vjust = 1) + scale_fill_manual(values = cellType.colors) + + stat_compare_means(comparisons = my_comparisons, label = "p.signif") + NoLegend() + return(p) +}) +p <- ggarrange(plotlist = plot.list[1:4],ncol = 2, nrow = 2) +print(p) +p <- ggarrange(plotlist = plot.list[5:8],ncol = 2, nrow = 2) +print(p) +p <- ggarrange(plotlist = plot.list[9:11],ncol = 2, nrow = 2) +print(p) + +vision.score.scale <- as.data.frame(scale(vision.score[, c("Progenitor Exhaustion", "Terminal Exhaustion")])) +vision.score.scale$group <- sub.scRNA.harmony$cellType +group.signature.data <- pivot_longer(vision.score.scale, cols = 1:2, names_to = "Type") +p <- ggviolin(group.signature.data, x = "group", y = "value", + color = "Type", palette = c("#00A087FF", "#F39B7FFF"), fill = "white", + add = "jitter", add.params = list(size = 0.1)) + ylab("Signature score") + xlab("") +p <- p + rotate_x_text(angle = 45, vjust = 1)+ stat_compare_means(aes(group = Type), label = "p.signif") +print(p) +dev.off() + + +#### terminal VS progenitor +source(file = "/home/longzhilin/Analysis_Code/Visualization/Plot.EnhancedVolcano.R") +DefaultAssay(sub.scRNA.harmony) <- "RNA" +Progenitor.Terminal.Exhausted <- FindMarkers(sub.scRNA.harmony, + ident.1 = "C3", + ident.2 = "C2", + logfc.threshold = 0, min.pct = 0.1, + test.use = "MAST", latent.vars = "orig.ident") +up.x <- Progenitor.Terminal.Exhausted %>% filter(avg_log2FC>0) %>% arrange(desc(avg_log2FC)) +down.x <- Progenitor.Terminal.Exhausted %>% filter(avg_log2FC<=0) %>% arrange(avg_log2FC) +Progenitor.Terminal.Exhausted <- rbind(up.x, down.x) +Progenitor.Terminal.Exhausted$gene <- rownames(Progenitor.Terminal.Exhausted) +write.xlsx(Progenitor.Terminal.Exhausted, file = "5.Immune/CD8T/Progenitor.Terminal.Exhausted.xlsx", rowNames = F) +saveRDS(Progenitor.Terminal.Exhausted, file = "5.Immune/CD8T/Progenitor.Terminal.Exhausted.rds") + +pdf("5.Immune/CD8T/Progenitor.Terminal.Exhausted.pdf") +p <- Plot.EnhancedVolcano(Progenitor.Terminal.Exhausted, x = "avg_log2FC", y = "p_val_adj", id.column = "gene", + FC.cutoff = 0.25, selected.showType = c("FC"), select.num = 10, + drawConnectors = T, title = "Terminal VS Progenitor") +print(p) +# top30 or down 30 --- log2FC +a <- arrange(Progenitor.Terminal.Exhausted, desc(avg_log2FC)) +Progenitor.Terminal.Exhausted.top30 <- a[c(1:30, (nrow(a)-29):nrow(a)), ] +rownames(Progenitor.Terminal.Exhausted.top30) <- Progenitor.Terminal.Exhausted.top30$gene +Progenitor.Terminal.Exhausted.top30 <- Progenitor.Terminal.Exhausted.top30[,"avg_log2FC",drop = F] +col_fun <- colorRamp2(c(-2, 0, 2), c("blue", "white", "red")) +Heatmap(Progenitor.Terminal.Exhausted.top30, name = "avg_log2FC (scRNA)", row_names_side = "left", col = col_fun, row_names_gp = gpar(fontsize = 9), cluster_rows = F, cluster_columns = F, width = unit(1, "cm")) +dev.off() \ No newline at end of file