--- a
+++ b/ATAC/Functions/TCGA-data.R
@@ -0,0 +1,74 @@
+setwd("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/Result")
+source(file = "/data/active_data/lzl/RenalTumor-20200713/code/analysis.diff.survival.TCGA.R")
+
+#### surivial analysis in TCGA
+#http://firebrowse.org/?cohort=KIRC&download_dialog=true,数据下载来源
+exp.data <- read.table("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/KIRC__RSEM_normalized__data.data.txt", 
+                        header = T, stringsAsFactors = F, sep = "\t")
+exp.data <- exp.data[-1,]
+rownames(exp.data) <- exp.data[,1]
+exp.data.process <- exp.data[,-1]
+exp.data.process <- apply(exp.data.process, 2, as.numeric)
+rownames(exp.data.process) <- rownames(exp.data)
+exp.data.process <- log2(exp.data.process+1)
+saveRDS(exp.data.process, file = "Log2.expression.rds") #20531*606
+
+#### raw count
+exp.matrix <- read.table("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/KIRC_RSEM_genes_data.data.txt", 
+                        header = T, stringsAsFactors = F, sep = "\t")
+count.index <- seq(1,1818,by=3)+1
+exp.matrix.count <- exp.matrix[,count.index]
+exp.matrix.count <- exp.matrix.count[-1,]
+rownames(exp.matrix.count) <- exp.matrix[2:nrow(exp.matrix),1]
+
+#处理表达谱名字
+gene.id <- gsub("\\|\\d+", "", rownames(exp.matrix.count))
+index <- which(gene.id == "?")
+exp.data.process.pro <- exp.data.process[-index,]
+exp.matrix.count.pro <- exp.matrix.count[-index,]
+gene.id <- gene.id[-index]
+#去除重复--- SLC35E2
+gene.id <- gene.id[-16273]
+exp.data.process.pro <- exp.data.process.pro[-16273,]
+exp.matrix.count.pro <- exp.matrix.count.pro[-16273,]
+rownames(exp.data.process.pro) <- gene.id
+rownames(exp.matrix.count.pro) <- gene.id
+saveRDS(exp.data.process.pro, file = "Log2.expression.pro.rds") #20501*606
+saveRDS(exp.matrix.count.pro, file = "exp.matrix.count.pro.rds") #20501*606
+
+#### process the survival data
+clin.data <- read.table("/data/active_data/lzl/RenalTumor-20200713/Data/TCGA/KIRC/KIRC_clin.txt", header = T, stringsAsFactors = F, sep = "\t")
+clin.data$Sample <- gsub("-", ".", clin.data$Sample)
+index <- grep("01$", clin.data$Sample)
+clin.data <- clin.data[index, ]
+saveRDS(clin.data, file = "clin.data.rds")
+
+##############################1.Differential expression analysis#########################################
+# Distinguish between normal and cancer samples
+sample.id <- colnames(exp.data.process.pro)
+sample.id <- substr(sample.id, 1, 16)
+sample.type <- substr(sample.id, 14, 15)
+
+##normal
+normal.index <- which(sample.type == "11") #72
+cancer.index <- which(sample.type == "01") #533
+
+####DEseq2 analysis
+library(DESeq2)
+exp.matrix.count.pro2 <- as.matrix(exp.matrix.count.pro)
+exp.matrix.count.pro2 <- apply(exp.matrix.count.pro2, 2, as.numeric)
+exp.matrix.count.pro2 <- round(exp.matrix.count.pro2)
+index <- which(rowSums(exp.matrix.count.pro2)>0)
+exp.matrix.count.pro2 <- exp.matrix.count.pro2[index,] #去除不表达的基因,
+rownames(exp.matrix.count.pro2) <- rownames(exp.matrix.count.pro)[index] #20221*606
+exp.matrix.count.pro2 <- exp.matrix.count.pro2[,c(normal.index, cancer.index)] #605个样本
+condition <- rep("Tumor", ncol(exp.matrix.count.pro2))
+condition[1:length(normal.index)] <- "Normal"
+coldata <- data.frame(row.names = colnames(exp.matrix.count.pro2), condition = as.factor(condition))
+dds <- DESeqDataSetFromMatrix(countData = exp.matrix.count.pro2, colData = coldata, design=~condition)
+dds <- DESeq(dds)
+DESeq2.result <- results(dds)
+saveRDS(DESeq2.result, file = "DESeq2.result.rds")
+#提取标化后的counts
+DESeq2.normalized_counts <- counts(dds, normalized=TRUE)
+saveRDS(DESeq2.normalized_counts, file = "DESeq2.normalized_counts.rds")
\ No newline at end of file