[40a513]: / ATAC / AnalysisPipeline / 8.2.Immune.Macrophage.TF.target.R

Download this file

524 lines (446 with data), 24.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#' @description: construct the TF regulatory network
library(Signac)
library(Seurat)
library(harmony)
library(SeuratWrappers)
library(GenomeInfoDb)
library(EnsDb.Hsapiens.v86) #---GRCh38 (hg38)
library(ggplot2)
library(patchwork)
library(ComplexHeatmap)
library(circlize)
library(clustree)
library(vegan)
library(reshape2)
library(openxlsx)
library(tidyverse)
library(data.table)
set.seed(101)
library(future)
plan("multiprocess", workers = 5)
options(future.globals.maxSize = 50000 * 1024^2) #50G
library(GenomicRanges)
library(ggpubr)
library(BSgenome.Hsapiens.UCSC.hg38)
library(chromVARmotifs)
data("human_pwms_v2")
source(file = "/home/longzhilin/Analysis_Code/Plot_colorPaletters.R")
source("/home/longzhilin/Analysis_Code/SingleCell/scATAC.Integrate.multipleSample.R")
source(file = "/home/longzhilin/Analysis_Code/SingleCell/Integrate.scRNA.scATAC.R")
setwd("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC")
source(file = "/home/longzhilin/Analysis_Code/code/ratio.plot.R")
sub.scATAC.harmony <- readRDS("8.Immune/Macrophage/sub.scATAC.harmony.pro.rds")
sub.scATAC.harmony$cellType <- sub.scATAC.harmony$cellType3
Idents(sub.scATAC.harmony) <- sub.scATAC.harmony$cellType
cellType.colors <- c("#F8766D", "#00BA38", "#619CFF")
DefaultAssay(sub.scATAC.harmony) <- "Peaks"
sub.scRNA.harmony <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/5.Immune/Macrophage/sub.scRNA.harmony.pro.rds")
sub.scRNA.harmony$cellType <- sub.scRNA.harmony$cellType3
Idents(sub.scRNA.harmony) <- sub.scRNA.harmony$cellType
DefaultAssay(sub.scRNA.harmony) <- "RNA"
####---- prepared the data
library(ggseqlogo)
interest.genes <- "MEF2C"
celltype <- "TAM-C1QB"
# motif information
motif.info <- data.frame(originName = names(sub.scATAC.harmony@assays$Peaks@motifs@motif.names), TF = unlist(sub.scATAC.harmony@assays$Peaks@motifs@motif.names))
rownames(motif.info) <- NULL
# subset by celltype
scATAC.sub <- subset(sub.scATAC.harmony, cellType == celltype) # 376
scRNA.sub <- subset(sub.scRNA.harmony, cellType == celltype) # 1803
scATAC.sub <- FindTopFeatures(scATAC.sub, min.cutoff=ncol(scATAC.sub)*0.05) # present in what % of cells
scRNA.sub <- FindVariableFeatures(scRNA.sub, nfeatures = 3000)
# use chipseeker annotate each peak in scATAC-seq
peak.info <- readRDS("4.Peak/peak.annotation.simple.ChIPseeker.rds")
PWMatrixToProbMatrix <- function(x){
if (class(x) != "PWMatrix") stop("x must be a TFBSTools::PWMatrix object")
m <- (exp(as(x, "matrix"))) * TFBSTools::bg(x)/sum(TFBSTools::bg(x))
m <- t(t(m)/colSums(m))
m
}
################################################################################
# Find promoters & genes with accessible TF binding sites
################################################################################
# settings for featureplot
order_values <- TRUE
reduction <- 'umap'
res <- sapply(interest.genes, function(x){
motif_name <- x
motif_ID <- motif.info$originName[match(x, motif.info$TF)] # e.g., ENSG00000008196_LINE2_TFAP2B_D_N1
# get all regions with motif binding site:
DefaultAssay(scATAC.sub) <- "Peaks"
motif_accessible <- Motifs(scATAC.sub)@data[, motif_ID]
motif_accessible <- names(motif_accessible)[motif_accessible > 0]
# subset this list by top features
motif_accessible <- motif_accessible[motif_accessible %in% VariableFeatures(scATAC.sub)]
# which of these peaks are at promoters?
motif_accessible_promoters <- motif_accessible[motif_accessible %in% peak.info$peaks[which(peak.info$originType == "Promoter (<=1kb)")]]
# which genes are associated with these promoters?
motif_target_genes <- peak.info$SYMBOL[match(motif_accessible_promoters, peak.info$peaks)]
# optional:
# which of these genes are highly expressed in snRNA-seq?
motif_target_genes.RNA <- motif_target_genes[motif_target_genes %in% VariableFeatures(scRNA.sub)] %>% as.character %>% unique
# remove genes that are not in the seurat obj
motif_target_genes <- as.character(motif_target_genes)
motif_target_genes <- motif_target_genes[motif_target_genes %in% rownames(scRNA.sub)]
# output
target.genelists <- list(data.frame(motif_target_genes.RNA), data.frame(motif_target_genes))
write.xlsx(target.genelists, file = paste0("8.Immune/Macrophage/TF.analysis/", x, "_targetGenes.xlsx"), sheetName = c("overlap with hvgs in scRNA-seq", "all target genes"))
################################################################################
# Compute module score for these target genes
################################################################################
gene_list <- list(motif_target_genes)
names(gene_list) <- paste0(motif_name, '_targets')
# add in whole data
sub.scRNA.harmony <- AddModuleScore(
sub.scRNA.harmony,
features=gene_list,
pool = rownames(sub.scRNA.harmony),
name=paste0(motif_name, '_targets')
)
################################################################################
# plot module score feature plot:
################################################################################
# plot promoter target gene module score for this TF:
p1 <- FeaturePlot(sub.scRNA.harmony, features = paste0(motif_name, '_targets1'), order = order_values, reduction = reduction) +
scale_color_gradient2(low=scales::muted('blue'), mid='white', high=scales::muted('red')) +
theme(plot.margin = unit(c(0, 0, 0, 0), "in")) +
ggtitle(paste0(motif_name, ' target score'))
pdf(paste0('8.Immune/Macrophage/TF.analysis/', celltype, '_', motif_name, '_targets.pdf'), width=5, height=4, useDingbats=FALSE)
print(p1)
# plot chromVAR deviation for this TF:
DefaultAssay(sub.scATAC.harmony) <- "chromvar"
p2 <- FeaturePlot(sub.scATAC.harmony, features = gsub("_", "-", motif_ID), order = order_values, reduction = reduction) +
scale_color_gradient2(
low=rgb(32, 67, 37, maxColorValue=255), mid='white', high=rgb(58, 22, 72, maxColorValue=255)) +
theme(plot.margin = unit(c(0, 0, 0, 0), "in")) +
ggtitle(paste0(motif_name, ' motif'))
print(p2)
################################################################################
# cluster violin plot for target expression modules
################################################################################
my_comparisons <- as.list(as.data.frame(combn(levels(sub.scRNA.harmony$cellType),2)))
a <- sub.scRNA.harmony@meta.data[, c(paste0(motif_name, '_targets1'), "cellType")]
colnames(a) <- c("Signature score", "group")
p3 <- ggboxplot(a, x = "group", y = "Signature score", title = x, color = "black", fill = "group", add = "jitter", add.params = list(color = "black", size = 0.1)) +
xlab("") + ylab(paste0(motif_name, ' targets')) + rotate_x_text(angle = 45, vjust = 1) + scale_fill_manual(values = cellType.colors) +
stat_compare_means(comparisons = my_comparisons, label = "p.signif") + NoLegend()
print(p3)
DefaultAssay(sub.scATAC.harmony) <- "chromvar"
a <- FetchData(sub.scATAC.harmony, vars = gsub("_", "-", motif_ID), slot = "data")
a$group <- sub.scATAC.harmony$cellType
my_comparisons <- as.list(as.data.frame(combn(levels(sub.scATAC.harmony$cellType),2)))
colnames(a) <- c("Signature score", "group")
p4 <- ggboxplot(a, x = "group", y = "Signature score", title = x, color = "black", fill = "group", add = "jitter", add.params = list(color = "black", size = 0.1)) +
xlab("") + ylab(paste0(motif_name, ' deviation')) + rotate_x_text(angle = 45, vjust = 1) + scale_fill_manual(values = cellType.colors) +
stat_compare_means(comparisons = my_comparisons, label = "p.signif") + NoLegend()
print(p4)
# motif logo
PPM <- PWMatrixToProbMatrix(human_pwms_v2[[motif_ID]])
p5 <- ggseqlogo(PPM) + ggtitle(motif_name) + theme(plot.title = element_text(hjust = 0.5))
print(p5)
dev.off()
})
################################################################################
# co-accessibility
################################################################################
library(cicero)
library(monocle3)
# input Seurat object
CreateCiceroCDS <- function(seurat_atac_obj, assay = "Peaks", reduction_method = c("UMAP", "tSNE")) {
DefaultAssay(seurat_atac_obj) <- assay
count_data <- GetAssayData(seurat_atac_obj, slots = "counts")
summ <- summary(count_data)
rownames(count_data) <- gsub("-", "_", rownames(count_data))
summ_frame <- data.frame(peak = rownames(count_data)[summ$i],
cell.id = colnames(count_data)[summ$j],
count = summ$x)
# create cell data set object with cicero constructor
input_cds <- make_atac_cds(summ_frame, binarize = TRUE)
input_cds <- detect_genes(input_cds)
input_cds <- input_cds[Matrix::rowSums(exprs(input_cds)) != 0,]
input_cds <- estimate_size_factors(input_cds)
input_cds <- preprocess_cds(input_cds, method="LSI")
input_cds <- reduce_dimension(input_cds, reduction_method=reduction_method, preprocess_method="LSI")
if(reduction_method == "UMAP"){
umap_coords <- reducedDims(input_cds)$UMAP
cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates=umap_coords)
}
if(reduction_method == "tSNE"){
umap_coords <- reducedDims(input_cds)$tSNE
cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates=umap_coords)
}
return(cicero_cds)
}
FindCiceroConnection <- function(seurat_atac_obj, cds, chrom = NULL) {
# require default assay is peak assay
# get the chromosome sizes from the Seurat object
genome <- seqlengths(seurat_atac_obj)
# run on the whole genome
levels <- paste0("chr",c(seq(1,22),"X","Y"))
genome <- genome[levels]
# convert chromosome sizes to a dataframe
genome.df <- data.frame("chr" = names(genome), "length" = genome)
conns <- run_cicero(cds, genomic_coords = genome.df)
return(conns)
}
Get_Ccans <- function(seurat_atac_obj, clusterID = NULL, reduction_method = "UMAP") {
if(!is.null(clusterID)) {
print(paste0("Subsetting seurat object for: ",clusterID))
seurat_atac_obj <- subset(seurat_atac_obj, ident = clusterID) # create a subset
}
# convert seurat objects into cicero cell datasets in preparation for detecting cicero connections
print("Preparing Cicero CDS")
ciceroCds <- CreateCiceroCDS(seurat_atac_obj, reduction_method = reduction_method)
# generate disease-specific CCANS for all chromsomes of a particular celltype
print("Finding Cicero connections")
conns <- FindCiceroConnection(seurat_atac_obj = seurat_atac_obj, cds = ciceroCds)
# Finding cis-Co-accessibility Networks (CCANS)
CCAN_assigns <- generate_ccans(conns)
# create a column that identifies which connections belong to a CCAN
ccan1 <- left_join(conns, CCAN_assigns, by=c("Peak1" = "Peak"), all.x=TRUE)
colnames(ccan1)[4] <- "CCAN1"
ccan2 <- left_join(conns, CCAN_assigns, by=c("Peak2" = "Peak"), all.x=TRUE)
colnames(ccan2)[4] <- "CCAN2"
df <- cbind(ccan1, CCAN2=ccan2$CCAN2) %>%
dplyr::mutate(CCAN = ifelse(CCAN1 == CCAN2, CCAN1, 0)) %>%
dplyr::select(-CCAN1, -CCAN2)
res <- list(ciceroCds = ciceroCds, conns = conns, CCAN_assigns = CCAN_assigns, df = df)
return(res)
}
####################################################################
# subset the snATACseq object by disease state within celltype of interest and find ccans
idents <- levels(sub.scATAC.harmony)
list.ccan <- lapply(idents, function(ident) {Get_Ccans(ident, seurat_atac_obj = sub.scATAC.harmony)})
# write to file
names(list.ccan) <- idents
lapply(names(list.ccan), function(x) {
fwrite(list.ccan[[x]]$df, file = paste0("8.Immune/Macrophage/Co-Accessible/ciceroConns.",x,".csv"), row.names = F)
})
saveRDS(list.ccan, file = "8.Immune/Macrophage/Co-Accessible/cellType.ccans.rds")
# calculate a global CCAN for all celltypes
ccan <- Get_Ccans(seurat_atac_obj = sub.scATAC.harmony)
fwrite(ccan$df, file = "8.Immune/Macrophage/Co-Accessible/ciceroConns.allcells.csv", row.names = F)
saveRDS(ccan, file = "8.Immune/Macrophage/Co-Accessible/ccans/All.ccans.rds")
#### 提取感兴趣的ccan
ciceroCds <- list.ccan[["celltype"]]$ciceroCds
conns <- list.ccan[["celltype"]]$conns
ccans <- list.ccan[["celltype"]]$CCAN_assigns
saveRDS(ciceroCds, file = paste0("8.Immune/Macrophage/Co-Accessible/", celltype,".ciceroCds.rds"))
saveRDS(conns, file = paste0("8.Immune/Macrophage/Co-Accessible/", celltype,".conns.rds"))
saveRDS(ccans, file = paste0("8.Immune/Macrophage/Co-Accessible/", celltype,".ccans.rds"))
fwrite(list.ccan[[celltype]]$df, file = paste0("8.Immune/Macrophage/Co-Accessible/ciceroConns.", celltype, ".csv"), row.names = F)
################################################################################
# annotated ccans
################################################################################
library(ChIPseeker)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
# read in cell-type-specific CCAN and filter by coaccess threshold > 0.2
dar_files <- list.files("8.Immune/Macrophage/Co-Accessible", recursive = TRUE, pattern = "ciceroConns.*.csv$", full.names = TRUE)
idents <- gsub(".*ciceroConns.", "", dar_files)
idents <- gsub(".csv", "", idents)
list.dar <- lapply(dar_files, function(file_path) {
fread(file_path) %>%
dplyr::filter(coaccess > 0.2) %>%
dplyr::select(Peak1, Peak2)
})
names(list.dar) <- idents
# convert the DAR to GRanges objects to annotate
list.dar.peak1.gr <- lapply(seq(list.dar), function(x) {
df <- list.dar[[x]]
gr <- StringToGRanges(df$Peak1, sep = c("_","_"))
return(gr)
})
names(list.dar.peak1.gr) <- idents
list.dar.peak2.gr <- lapply(seq(list.dar), function(x) {
df <- list.dar[[x]]
gr <- StringToGRanges(df$Peak2, sep = c("_","_"))
return(gr)
})
names(list.dar.peak2.gr) <- idents
# annotate the list of GRanges DAR for each cell type with the peak location
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
list.peak1.Anno <- lapply(list.dar.peak1.gr, annotatePeak, TxDb = txdb,
tssRegion = c(-3000, 3000), annoDb="org.Hs.eg.db", verbose = FALSE)
list.peak1.loc <- lapply(seq(list.peak1.Anno), function(x) {
loc <- list.peak1.Anno[[x]]@anno$annotation
loc <- str_split(loc, pattern = " ", simplify = TRUE)[,1]
loc <- str_replace(loc, pattern="3'", replacement="3p_UTR")
loc <- str_replace(loc, pattern="5'", replacement="5p_UTR")
loc <- str_replace(loc, pattern="Distal", replacement="Intergenic")
return(loc)
})
list.peak2.Anno <- lapply(list.dar.peak2.gr, annotatePeak, TxDb = txdb,
tssRegion = c(-3000, 3000), annoDb="org.Hs.eg.db", verbose = FALSE)
list.peak2.loc <- lapply(seq(list.peak2.Anno), function(x) {
loc <- list.peak2.Anno[[x]]@anno$annotation
loc <- str_split(loc, pattern = " ", simplify = TRUE)[,1]
loc <- str_replace(loc, pattern="3'", replacement="3p_UTR")
loc <- str_replace(loc, pattern="5'", replacement="5p_UTR")
loc <- str_replace(loc, pattern="Distal", replacement="Intergenic")
return(loc)
})
# create df with peak1 and peak2 locations
list.peaks.loc.df <- lapply(seq(idents), function(x) {
df <- cbind(list.peak1.loc[[x]], list.peak2.loc[[x]]) %>% as.data.frame()
colnames(df) <- c("Peak1","Peak2")
counts <- dplyr::count(df, Peak1, Peak2) %>% as.data.frame()
})
names(list.peaks.loc.df) <- idents
################################################################################
# identify cis-regulated elements
################################################################################
####要求one of the peaks overlap a gene's promoter (1kb)
peak1.anno <- list.peak1.Anno[[celltype]]@anno
peak2.anno <- list.peak2.Anno[[celltype]]@anno
tumor.conns <- fread(paste0("8.Immune/Macrophage/Co-Accessible/ciceroConns.", celltype, ".csv"))
tumor.conns <- tumor.conns %>% dplyr::filter(coaccess > 0.2) # 249226 peak-pairs
tumor.conns <- tumor.conns %>% mutate(peak1_type = peak1.anno$annotation, peak1_distanceToTSS = peak1.anno$distanceToTSS, peak1_nearestGene = peak1.anno$SYMBOL,
peak2_type = peak2.anno$annotation, peak2_distanceToTSS = peak2.anno$distanceToTSS, peak2_nearestGene = peak2.anno$SYMBOL)
bg <- na.omit(unique(c(tumor.conns$peak1_nearestGene, tumor.conns$peak2_nearestGene))) # 作为background gene:17567
#筛选出包含promoter的conns
tumor.cCREs <- tumor.conns %>% dplyr::filter(str_detect(peak1_type, pattern = "Promoter \\(<=1kb\\)"))
tumor.cCREs <- tumor.cCREs[!is.na(tumor.cCREs$peak1_nearestGene),]
conns_list <- group_split(tumor.cCREs, peak1_nearestGene) #基于peak1_nearestGene分组,通常按字母顺序排序
names(conns_list) <- sort(unique(tumor.cCREs$peak1_nearestGene))
# loop over all genes to compute correlation between accessibility & expression
df <- data.frame()
corr_list <- lapply(interest.genes, function(x){
cat("calculated gene:", x, "\n")
# subset by cur_gene
cur_conns <- conns_list[[x]]
cur_conns <- cur_conns[!(cur_conns$Peak2 %in% cur_conns$Peak1),]
cur_conns <- subset(cur_conns, coaccess >= 0.2)
# skip this gene if there are no co-accessible connections
if(nrow(cur_conns) == 0){return(data.frame())}
return(cur_conns)
})
# combine into one df and remove incomplete entries:
df <- Reduce(rbind, corr_list)
df$peak2_type <- gsub(" .*", "", df$peak2_type)
df$peak2_type <- gsub("'", "_UTR", df$peak2_type)
# distance between peak and target gene
peak1_ranges <- StringToGRanges(gsub("_", "-", df$Peak1))
peak2_ranges <- StringToGRanges(gsub("_", "-", df$Peak2))
df$distance_bp <- abs(start(peak1_ranges) - start(peak2_ranges))
#### 定义enhancer
cCREs <- df
#要求peak1和peak2 距离10kb以上且peak2 type不能为promoter --- enhancer
cCREs <- cCREs %>% subset(distance_bp/1000>=10 & peak2_type != 'Promoter')
cCREs$target_gene <- cCREs$peak1_nearestGene
cCREs$peak_gene <- paste0(cCREs$Peak2, '_', cCREs$peak1_nearestGene)
################################################################################
# Construct TF nets
################################################################################
library(igraph)
library(RColorBrewer)
TFs.info <- motif.info[match(interest.genes, motif.info$TF),]
# for each motif, find genes:
use_variable_genes <- T
motif_list <- list()
edge_df.list <- data.frame()
vertex_df.list <- data.frame()
for(i in 1:nrow(TFs.info)){
motif_name <- TFs.info[i,2]
motif_ID <- TFs.info[i,1]
# get list of promoter and enhancer targets of these TFs
DefaultAssay(scATAC.sub) <- "Peaks"
motif_accessible <- Motifs(scATAC.sub)@data[,motif_ID]
motif_accessible <- names(motif_accessible)[motif_accessible > 0]
motif_accessible <- motif_accessible[motif_accessible %in% VariableFeatures(scATAC.sub)]
motif_accessible_promoters <- motif_accessible[motif_accessible %in% peak.info$peaks[which(peak.info$originType == "Promoter (<=1kb)")]]
motif_target_genes <- peak.info$SYMBOL[match(motif_accessible_promoters, peak.info$peaks)]
motif_target_genes <- as.character(motif_target_genes)
# variable genes only?
if(use_variable_genes){
motif_target_genes <- motif_target_genes[motif_target_genes %in% VariableFeatures(scRNA.sub)] %>% as.character %>% unique
} else{
motif_target_genes<- motif_target_genes %>% as.character %>% unique
}
# enhancer target genes
motif_accessible_enhancers <- motif_accessible[motif_accessible %in% cCREs$Peak2]
motif_cCREs <- subset(cCREs, Peak2 %in% motif_accessible_enhancers)
motif_enhancers_target_genes <- motif_cCREs$target_gene
# variable genes only?
if(use_variable_genes){
motif_enhancers_target_genes <- motif_enhancers_target_genes[motif_enhancers_target_genes %in% VariableFeatures(scRNA.sub)] %>% as.character %>% unique
}else{
motif_enhancers_target_genes<- motif_enhancers_target_genes %>% as.character %>% unique
}
vertex_df <- data.frame(name = c(motif_name, as.character(unique(c(motif_enhancers_target_genes, motif_target_genes)))))
# check if there are promoter targets:
if(length(motif_target_genes) > 0){
promoter_edge_df <- data.frame(
from = motif_name,
to = as.character(motif_target_genes),
type = 'promoter'
)
} else{promoter_edge_df <- data.frame()}
# check if there are enhancer targets:
if(length(motif_enhancers_target_genes) > 0){
enhancer_edge_df <- data.frame(
from = motif_name,
to = as.character(motif_enhancers_target_genes),
type = 'enhancer'
)
} else{enhancer_edge_df <- data.frame()}
#cur_edge_df <- rbind(cur_promoter_edge_df, cur_enhancer_edge_df, cur_repressors_edge_df)
edge_df <- rbind(promoter_edge_df, enhancer_edge_df)
edge_df.list <- rbind(edge_df.list, edge_df)
vertex_df.list <- rbind(vertex_df.list, vertex_df)
}
vertex_df.list <- data.frame(name=na.omit(as.character(unique(vertex_df.list$name))))
vertex_df.list$name <- as.character(vertex_df.list$name)
edge_df.list <- na.omit(edge_df.list)
################################################################################
# visual settings for network
################################################################################
#加入差异基因
sub.scRNA.DEGs <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/5.Immune/Macrophage/cellType.DE.pro.rds")
sub.scRNA.DEGs <- filter(sub.scRNA.DEGs, abs(avg_log2FC) > 0.25 & p_val_adj < 0.05)
cellType.DEGs <- sub.scRNA.DEGs[which(sub.scRNA.DEGs$cluster == celltype),]
# color vertices based on Diagnosis DEGs:
up_genes <- cellType.DEGs %>% filter(p_val_adj < 0.05 & avg_log2FC >= 0.5) %>% .$gene
down_genes <- cellType.DEGs %>% filter(p_val_adj < 0.05 & avg_log2FC < -0.5) %>% .$gene
# remove labels if gene is not DE, or not a TF:
de_targets <- as.character(vertex_df.list$name[vertex_df.list$name %in% unique(c(up_genes, down_genes))])
de_targets <- unique(c(de_targets, interest.genes))
vertex_df.list$label <- ifelse(vertex_df.list$name %in% de_targets, vertex_df.list$name, '')
vertex_df.list$label <- ifelse(vertex_df.list$name %in% as.character(motif.info$TF), vertex_df.list$name, vertex_df.list$label)
#vertex_df.list$label <- ifelse(vertex_df.list$name %in% gwas_genes, vertex_df.list$name, vertex_df.list$label)
# set node color based on control vs AD DEGs:
vertex_df.list$color <- ifelse(vertex_df.list$name %in% up_genes, "#E87D72", "#FFFFFF")
vertex_df.list$color <- ifelse(vertex_df.list$name %in% down_genes, '#55BCC2', vertex_df.list$color)
vertex_df.list$color <- ifelse(vertex_df.list$name %in% interest.genes, '#1E90FF',vertex_df.list$color)
vertex_df.list$color <- ifelse(vertex_df.list$name %in% as.character(motif.info$TF), '#1E90FF',vertex_df.list$color)
#vertex_df.list$color <- ifelse(vertex_df.list$name %in% gwas_genes, 'orange', vertex_df.list$color)
# italics font for genes:
vertex_df.list$font <- 2
other_tfs <- setdiff(motif.info$TF, interest.genes)
#vertex_df.list$size <- ifelse((vertex_df.list$name %in% de_targets | vertex_df.list$name %in% gwas_genes | vertex_df.list$name %in% other_tfs), 5, 2)
vertex_df.list$size <- ifelse((vertex_df.list$name %in% de_targets), 5, 2)
vertex_df.list$size <- ifelse(vertex_df.list$name %in% as.character(motif.info$TF), 5, vertex_df.list$size)
vertex_df.list$size <- ifelse(vertex_df.list$name %in% interest.genes, 10, vertex_df.list$size)
################################################################################
# graph all nodes
enhancer_color <- '#FFC125'
promoter_color <- '#00CED1'
# repressor_color <- 'gray'
g <- igraph::graph_from_data_frame(edge_df.list, directed=TRUE, vertices = vertex_df.list)
l <- layout_nicely(g)
edge_colors <- ifelse(E(g)$type == 'promoter', promoter_color, enhancer_color)
# edge_colors <- ifelse(E(g)$type == 'repressor', repressor_color, edge_colors)
pdf(paste0('8.Immune/Macrophage/TF.analysis/', celltype, '_TF_interaction_graph.pdf'), width=10, height=10, useDingbats=FALSE)
plot(
g, layout=l,
vertex.size=vertex_df.list$size,
edge.color=edge_colors,
edge.alpha=0.5,
vertex.color=vertex_df.list$color,
vertex.label=vertex_df.list$label, vertex.label.family='Helvetica', vertex.label.font=vertex_df.list$font,
vertex.label.color = 'black',
vertex.frame.color = "grey",
vertex.alpha = 0.8,
edge.arrow.size=0.25
)
dev.off()