[40a513]: / ATAC / AnalysisPipeline / 7.2.Tumor.TFs.regulatoryNetwork.R

Download this file

205 lines (168 with data), 8.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#' @description: this script idnetify TF target gene and construct the TF network
library(openxlsx)
library(circlize)
library(dplyr)
library(tibble)
library(data.table)
library(Signac)
library(Seurat)
library(stringr)
library(BSgenome.Hsapiens.UCSC.hg38)
library(chromVARmotifs)
data("human_pwms_v2")
library(ggplot2)
library(ggseqlogo)
library(ggpubr)
library(openxlsx)
setwd("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC")
scATAC.data <- readRDS("scATAC.data.pro.rds")
DefaultAssay(scATAC.data) <- "Peaks"
scRNA.data <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/data.merge.pro.rds")
DefaultAssay(scRNA.data) <- "RNA"
celltype <- "Tumor"
Tumor.TF.motifs <- readRDS("5.Motif/Analysis/tumor.specific.TFs.rds")
scRNA.DEGs <- readRDS("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scRNA/2.Cluster/AnnotateCellType/cellType.sig.pos.DEGs.rds")
# motif information
motif.info <- data.frame(originName = names(scATAC.data@assays$Peaks@motifs@motif.names), TF = unlist(scATAC.data@assays$Peaks@motifs@motif.names))
rownames(motif.info) <- NULL
# originName TF
# ENSG00000008196_LINE2_TFAP2B_D_N1 TFAP2B
# ENSG00000008197_LINE6_TFAP2D_D TFAP2D
# ENSG00000087510_LINE7_TFAP2C_D_N3 TFAP2C
# ENSG00000116819_LINE19_TFAP2E_I TFAP2E
# ENSG00000137203_LINE29_TFAP2A_D_N3 TFAP2A
# ENSG00000116017_LINE44_ARID3A_D_N1 ARID3A
# subset by celltype
scATAC.sub <- subset(scATAC.data, cellType_low == celltype)
scRNA.sub <- subset(scRNA.data, cellType_low == celltype)
scATAC.sub <- FindTopFeatures(scATAC.sub, min.cutoff=ncol(scATAC.sub)*0.05) # present in what % of cells
scRNA.sub <- FindVariableFeatures(scRNA.sub, nfeatures = 3000)
# use chipseeker annotate each peak in scATAC-seq
peak.info <- readRDS("4.Peak/peak.annotation.simple.ChIPseeker.rds")
PWMatrixToProbMatrix <- function(x){
if (class(x) != "PWMatrix") stop("x must be a TFBSTools::PWMatrix object")
m <- (exp(as(x, "matrix"))) * TFBSTools::bg(x)/sum(TFBSTools::bg(x))
m <- t(t(m)/colSums(m))
m
}
################################################################################
# Construct TF nets
################################################################################
library(igraph)
library(RColorBrewer)
cCREs <- readRDS("6.Co-Accessible/Tumor_peak_gene_correlation.rds") # 4733 cCREs
cCREs <- cCREs %>% subset(distance_bp/1000>=10 & peak2_type != 'Promoter')
cCREs$target_gene <- cCREs$peak1_nearestGene
cCREs$peak_gene <- paste0(cCREs$Peak2, '_', cCREs$peak1_nearestGene)
# get links for this cell type
#cCREs <- subset(top_link_df, celltype %in% cur_celltype)
cCREs$Peak1 <- gsub("_", "-", cCREs$Peak1)
cCREs$Peak2 <- gsub("_", "-", cCREs$Peak2)
interest.TFs <- c("OTP", "ISL1", "VENTX", "HOXC5")
TFs.info <- motif.info[match(interest.TFs, motif.info$TF),]
# for each motif, find genes:
motif_list <- list()
edge_df.list <- data.frame()
vertex_df.list <- data.frame()
for(i in 1:nrow(TFs.info)){
motif_name <- TFs.info[i,2]
motif_ID <- TFs.info[i,1]
# get list of promoter and enhancer targets of these TFs
DefaultAssay(scATAC.sub) <- "Peaks"
motif_accessible <- Motifs(scATAC.sub)@data[,motif_ID]
motif_accessible <- names(motif_accessible)[motif_accessible > 0]
motif_accessible <- motif_accessible[motif_accessible %in% VariableFeatures(scATAC.sub)]
motif_accessible_promoters <- motif_accessible[motif_accessible %in% peak.info$peaks[which(peak.info$originType == "Promoter (<=1kb)")]]
motif_target_genes <- peak.info$SYMBOL[match(motif_accessible_promoters, peak.info$peaks)]
motif_target_genes <- as.character(motif_target_genes)
# variable genes only?
if(use_variable_genes){
motif_target_genes <- motif_target_genes[motif_target_genes %in% VariableFeatures(scRNA.sub)] %>% as.character %>% unique
} else{
motif_target_genes<- motif_target_genes %>% as.character %>% unique
}
# enhancer target genes
motif_accessible_enhancers <- motif_accessible[motif_accessible %in% cCREs$Peak2]
motif_cCREs <- subset(cCREs, Peak2 %in% motif_accessible_enhancers)
motif_enhancers_target_genes <- motif_cCREs$target_gene
# variable genes only?
if(use_variable_genes){
motif_enhancers_target_genes <- motif_enhancers_target_genes[motif_enhancers_target_genes %in% VariableFeatures(scRNA.sub)] %>% as.character %>% unique
}else{
motif_enhancers_target_genes<- motif_enhancers_target_genes %>% as.character %>% unique
}
vertex_df <- data.frame(name = c(motif_name, as.character(unique(c(motif_enhancers_target_genes, motif_target_genes)))))
# check if there are promoter targets:
if(length(motif_target_genes) > 0){
promoter_edge_df <- data.frame(
from = motif_name,
to = as.character(motif_target_genes),
type = 'promoter'
)
} else{promoter_edge_df <- data.frame()}
# check if there are enhancer targets:
if(length(motif_enhancers_target_genes) > 0){
enhancer_edge_df <- data.frame(
from = motif_name,
to = as.character(motif_enhancers_target_genes),
type = 'enhancer'
)
} else{enhancer_edge_df <- data.frame()}
#cur_edge_df <- rbind(cur_promoter_edge_df, cur_enhancer_edge_df, cur_repressors_edge_df)
edge_df <- rbind(promoter_edge_df, enhancer_edge_df)
edge_df.list <- rbind(edge_df.list, edge_df)
vertex_df.list <- rbind(vertex_df.list, vertex_df)
}
vertex_df.list <- data.frame(name=na.omit(as.character(unique(vertex_df.list$name))))
vertex_df.list$name <- as.character(vertex_df.list$name)
edge_df.list <- na.omit(edge_df.list)
################################################################################
# visual settings for network
################################################################################
cellType.DEGs <- scRNA.DEGs[which(scRNA.DEGs$cluster == celltype),]
# color vertices based on Diagnosis DEGs:
up_genes <- cellType.DEGs %>% filter(p_val_adj < 0.05 & avg_log2FC >= 1) %>% .$gene
down_genes <- cellType.DEGs %>% filter(p_val_adj < 0.05 & avg_log2FC < -1) %>% .$gene
# remove labels if gene is not DE, or not a TF:
de_targets <- as.character(vertex_df.list$name[vertex_df.list$name %in% unique(c(up_genes, down_genes))])
vertex_df.list$label <- ifelse(vertex_df.list$name %in% de_targets, vertex_df.list$name, '')
vertex_df.list$label <- ifelse(vertex_df.list$name %in% as.character(motif.info$TF), vertex_df.list$name, vertex_df.list$label)
#vertex_df.list$label <- ifelse(vertex_df.list$name %in% gwas_genes, vertex_df.list$name, vertex_df.list$label)
# set node color based on DEGs and TF:
vertex_df.list$color <- ifelse(vertex_df.list$name %in% as.character(motif.info$TF), '#1E90FF', "#FFFFFF")
vertex_df.list$color <- ifelse(vertex_df.list$name %in% up_genes, "#E87D72", "#FFFFFF")
vertex_df.list$color <- ifelse(vertex_df.list$name %in% down_genes, '#55BCC2', vertex_df.list$color)
vertex_df.list$color <- ifelse(vertex_df.list$name %in% as.character(motif.info$TF), '#1E90FF',vertex_df.list$color)
#vertex_df.list$color <- ifelse(vertex_df.list$name %in% gwas_genes, 'orange', vertex_df.list$color)
# italics font for genes:
vertex_df.list$font <- ifelse(vertex_df.list$name %in% as.character(motif.info$TF), 2, 1)
# set size to larger if the gene is a TF:
vertex_df.list$size <- ifelse(vertex_df.list$name %in% as.character(motif.info$TF), 10, 2)
other_tfs <- setdiff(motif.info$TF, interest.TFs)
#vertex_df.list$size <- ifelse((vertex_df.list$name %in% de_targets | vertex_df.list$name %in% gwas_genes | vertex_df.list$name %in% other_tfs), 5, 2)
vertex_df.list$size <- ifelse((vertex_df.list$name %in% de_targets | vertex_df.list$name %in% other_tfs), 5, 2)
vertex_df.list$size <- ifelse(vertex_df.list$name %in% interest.TFs, 10, vertex_df.list$size)
################################################################################
# graph all nodes
################################################################################
enhancer_color <- '#FFC125'
promoter_color <- '#00CED1'
# repressor_color <- 'gray'
g <- igraph::graph_from_data_frame(edge_df.list, directed=TRUE, vertices = vertex_df.list)
l <- layout_nicely(g)
edge_colors <- ifelse(E(g)$type == 'promoter', promoter_color, enhancer_color)
# edge_colors <- ifelse(E(g)$type == 'repressor', repressor_color, edge_colors)
pdf(paste0('7.TF.analysis/network/', celltype, '_TF_interaction_graph.pdf'), width=10, height=10, useDingbats=FALSE)
plot(
g, layout=l,
vertex.size=vertex_df.list$size,
edge.color=edge_colors,
edge.alpha=0.5,
vertex.color=vertex_df.list$color,
vertex.label=vertex_df.list$label, vertex.label.family='Helvetica', vertex.label.font=vertex_df.list$font,
vertex.label.color = 'black',
vertex.frame.color = "grey",
vertex.alpha = 0.8,
edge.arrow.size=0.25
)
dev.off()