|
a |
|
b/ATAC/AnalysisPipeline/6.1.cis-coassessibility.R |
|
|
1 |
#' @description: identify the cis-coassessibility peaks |
|
|
2 |
|
|
|
3 |
library(Signac) |
|
|
4 |
library(Seurat) |
|
|
5 |
library(SeuratWrappers) |
|
|
6 |
library(ggplot2) |
|
|
7 |
library(patchwork) |
|
|
8 |
library(cicero) |
|
|
9 |
library(monocle3) |
|
|
10 |
set.seed(101) |
|
|
11 |
library(ggpubr) |
|
|
12 |
library(openxlsx) |
|
|
13 |
library(ComplexHeatmap) |
|
|
14 |
library(circlize) |
|
|
15 |
library(tidyverse) |
|
|
16 |
library(data.table) |
|
|
17 |
library(future) |
|
|
18 |
plan("multiprocess", workers = 10) |
|
|
19 |
options(future.globals.maxSize = 50000 * 1024^2) #50G |
|
|
20 |
|
|
|
21 |
setwd("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC") |
|
|
22 |
|
|
|
23 |
scATAC.data <- readRDS("scATAC.data.pro.rds") |
|
|
24 |
Idents(scATAC.data) <- scATAC.data$AnnotatedcellType |
|
|
25 |
DefaultAssay(scATAC.data) <- "Peaks" |
|
|
26 |
|
|
|
27 |
# input Seurat object |
|
|
28 |
CreateCiceroCDS <- function(seurat_atac_obj, assay = "Peaks", reduction_method = c("UMAP", "tSNE")) { |
|
|
29 |
DefaultAssay(seurat_atac_obj) <- assay |
|
|
30 |
count_data <- GetAssayData(seurat_atac_obj, slots = "counts") |
|
|
31 |
summ <- summary(count_data) |
|
|
32 |
rownames(count_data) <- gsub("-", "_", rownames(count_data)) |
|
|
33 |
summ_frame <- data.frame(peak = rownames(count_data)[summ$i], |
|
|
34 |
cell.id = colnames(count_data)[summ$j], |
|
|
35 |
count = summ$x) |
|
|
36 |
|
|
|
37 |
# create cell data set object with cicero constructor |
|
|
38 |
input_cds <- make_atac_cds(summ_frame, binarize = TRUE) |
|
|
39 |
input_cds <- detect_genes(input_cds) |
|
|
40 |
input_cds <- input_cds[Matrix::rowSums(exprs(input_cds)) != 0,] |
|
|
41 |
input_cds <- estimate_size_factors(input_cds) |
|
|
42 |
input_cds <- preprocess_cds(input_cds, method="LSI") |
|
|
43 |
input_cds <- reduce_dimension(input_cds, reduction_method=reduction_method, preprocess_method="LSI") |
|
|
44 |
|
|
|
45 |
if(reduction_method == "UMAP"){ |
|
|
46 |
umap_coords <- reducedDims(input_cds)$UMAP |
|
|
47 |
cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates=umap_coords) |
|
|
48 |
} |
|
|
49 |
|
|
|
50 |
if(reduction_method == "tSNE"){ |
|
|
51 |
umap_coords <- reducedDims(input_cds)$tSNE |
|
|
52 |
cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates=umap_coords) |
|
|
53 |
} |
|
|
54 |
return(cicero_cds) |
|
|
55 |
} |
|
|
56 |
|
|
|
57 |
FindCiceroConnection <- function(seurat_atac_obj, cds, chrom = NULL) { |
|
|
58 |
# require default assay is peak assay |
|
|
59 |
|
|
|
60 |
# get the chromosome sizes from the Seurat object |
|
|
61 |
genome <- seqlengths(seurat_atac_obj) |
|
|
62 |
|
|
|
63 |
# run on the whole genome |
|
|
64 |
levels <- paste0("chr",c(seq(1,22),"X","Y")) |
|
|
65 |
genome <- genome[levels] |
|
|
66 |
|
|
|
67 |
# convert chromosome sizes to a dataframe |
|
|
68 |
genome.df <- data.frame("chr" = names(genome), "length" = genome) |
|
|
69 |
conns <- run_cicero(cds, genomic_coords = genome.df) |
|
|
70 |
return(conns) |
|
|
71 |
} |
|
|
72 |
|
|
|
73 |
Get_Ccans <- function(seurat_atac_obj, clusterID = NULL, reduction_method = "UMAP") { |
|
|
74 |
if(!is.null(clusterID)) { |
|
|
75 |
print(paste0("Subsetting seurat object for: ",clusterID)) |
|
|
76 |
seurat_atac_obj <- subset(seurat_atac_obj, ident = clusterID) # create a subset |
|
|
77 |
} |
|
|
78 |
# convert seurat objects into cicero cell datasets in preparation for detecting cicero connections |
|
|
79 |
print("Preparing Cicero CDS") |
|
|
80 |
ciceroCds <- CreateCiceroCDS(seurat_atac_obj, reduction_method = reduction_method) |
|
|
81 |
|
|
|
82 |
# generate disease-specific CCANS for all chromsomes of a particular celltype |
|
|
83 |
print("Finding Cicero connections") |
|
|
84 |
conns <- FindCiceroConnection(seurat_atac_obj = seurat_atac_obj, cds = ciceroCds) |
|
|
85 |
|
|
|
86 |
# Finding cis-Co-accessibility Networks (CCANS) |
|
|
87 |
CCAN_assigns <- generate_ccans(conns) |
|
|
88 |
|
|
|
89 |
# create a column that identifies which connections belong to a CCAN |
|
|
90 |
ccan1 <- left_join(conns, CCAN_assigns, by=c("Peak1" = "Peak"), all.x=TRUE) |
|
|
91 |
colnames(ccan1)[4] <- "CCAN1" |
|
|
92 |
ccan2 <- left_join(conns, CCAN_assigns, by=c("Peak2" = "Peak"), all.x=TRUE) |
|
|
93 |
colnames(ccan2)[4] <- "CCAN2" |
|
|
94 |
df <- cbind(ccan1, CCAN2=ccan2$CCAN2) %>% |
|
|
95 |
dplyr::mutate(CCAN = ifelse(CCAN1 == CCAN2, CCAN1, 0)) %>% |
|
|
96 |
dplyr::select(-CCAN1, -CCAN2) |
|
|
97 |
res <- list(ciceroCds = ciceroCds, conns = conns, CCAN_assigns = CCAN_assigns, df = df) |
|
|
98 |
return(res) |
|
|
99 |
} |
|
|
100 |
|
|
|
101 |
#################################################################### |
|
|
102 |
# subset the snATACseq object by disease state within celltype of interest and find ccans |
|
|
103 |
idents <- levels(scATAC.data) |
|
|
104 |
# remove mast cell due to the cell number less than 100 |
|
|
105 |
idents <- idents[-12] |
|
|
106 |
list.ccan <- lapply(idents, function(ident) {Get_Ccans(ident, seurat_atac_obj = scATAC.data)}) |
|
|
107 |
|
|
|
108 |
# write to file |
|
|
109 |
names(list.ccan) <- idents |
|
|
110 |
lapply(names(list.ccan), function(x) { |
|
|
111 |
fwrite(list.ccan[[x]]$df, file = paste0("6.Co-Accessible/ccans/ciceroConns.",x,".csv"), row.names = F) |
|
|
112 |
}) |
|
|
113 |
saveRDS(list.ccan, file = "6.Co-Accessible/ccans/cellType.ccans.rds") |
|
|
114 |
|
|
|
115 |
# calculate a global CCAN for all celltypes |
|
|
116 |
ccan <- Get_Ccans(seurat_atac_obj = scATAC.data) |
|
|
117 |
fwrite(ccan$df, file = "6.Co-Accessible/ccans/ciceroConns.allcells.csv", row.names = F) |
|
|
118 |
saveRDS(ccan, file = "6.Co-Accessible/ccans/All.ccans.rds") |
|
|
119 |
|
|
|
120 |
#### extract the tumor-ccan |
|
|
121 |
tumor.ciceroCds <- list.ccan$Tumor$ciceroCds |
|
|
122 |
tumor.conns <- list.ccan$Tumor$conns |
|
|
123 |
tumor.ccans <- list.ccan$Tumor$CCAN_assigns |
|
|
124 |
saveRDS(tumor.ciceroCds, file = "6.Co-Accessible/ccans/tumor.ciceroCds.rds") |
|
|
125 |
saveRDS(tumor.conns, file = "6.Co-Accessible/ccans/tumor.conns.rds") |