|
a |
|
b/ATAC/AnalysisPipeline/2.cluster.R |
|
|
1 |
#' @description: cluster and dimension reduction |
|
|
2 |
|
|
|
3 |
library(Signac) |
|
|
4 |
library(Seurat) |
|
|
5 |
library(harmony) |
|
|
6 |
library(SeuratWrappers) |
|
|
7 |
library(GenomeInfoDb) |
|
|
8 |
library(EnsDb.Hsapiens.v86) #---GRCh38 (hg38) |
|
|
9 |
library(ggplot2) |
|
|
10 |
library(patchwork) |
|
|
11 |
library(clustree) |
|
|
12 |
set.seed(101) |
|
|
13 |
library(future) |
|
|
14 |
plan("multiprocess", workers = 4) |
|
|
15 |
options(future.globals.maxSize = 50000 * 1024^2) #50G |
|
|
16 |
library(GenomicRanges) |
|
|
17 |
library(ggpubr) |
|
|
18 |
source("/home/longzhilin/Analysis_Code/SingleCell/scATAC.Integrate.multipleSample.R") |
|
|
19 |
setwd("/data/active_data/lzl/RenalTumor-20200713/DataAnalysis-20210803/scATAC") |
|
|
20 |
|
|
|
21 |
scATAC.merge.pro <- readRDS("scATAC.merge.pro.rds") |
|
|
22 |
|
|
|
23 |
#Normalization: Signac performs term frequency-inverse document frequency (TF-IDF) normalization. |
|
|
24 |
#This is a two-step normalization procedure, that both normalizes across cells to correct for differences in cellular sequencing depth, and across peaks to give higher values to more rare peaks. |
|
|
25 |
scATAC.merge.pro <- RunTFIDF(scATAC.merge.pro) |
|
|
26 |
|
|
|
27 |
#Feature selection:though we note that we see very similar results when using only a subset of features (try setting min.cutoff to ‘q75’ to use the top 25% all peaks) |
|
|
28 |
scATAC.merge.pro <- FindTopFeatures(scATAC.merge.pro, min.cutoff = 'q1') |
|
|
29 |
|
|
|
30 |
saveRDS(scATAC.merge.pro, file = "scATAC.merge.pro.rds") |
|
|
31 |
|
|
|
32 |
#####################1.observe batch effect######################## |
|
|
33 |
#Dimension reduction: We next run singular value decomposition (SVD) on the TD-IDF matrix, using the features (peaks) selected above. |
|
|
34 |
scATAC.merge.pro <- RunSVD(scATAC.merge.pro) |
|
|
35 |
scATAC.merge.pro <- RunUMAP(scATAC.merge.pro, dims = 2:30, reduction = 'lsi') |
|
|
36 |
scATAC.merge.pro <- RunTSNE(scATAC.merge.pro, dims = 2:30, reduction = 'lsi') |
|
|
37 |
pdf("2.Cluster/observe.patient.effect.pdf") |
|
|
38 |
ElbowPlot(object = scATAC.merge.pro, ndims = 30, reduction = "lsi") |
|
|
39 |
DepthCor(scATAC.merge.pro) |
|
|
40 |
DimPlot(scATAC.merge.pro, group.by = 'dataset', pt.size = 0.1, reduction = 'umap') |
|
|
41 |
DimPlot(scATAC.merge.pro, group.by = 'dataset', pt.size = 0.1, reduction = 'tsne') |
|
|
42 |
dev.off() |
|
|
43 |
|
|
|
44 |
#####################2.correct batch effect######################## |
|
|
45 |
DefaultAssay(scATAC.merge.pro) <- "ATAC" |
|
|
46 |
|
|
|
47 |
pdf("2.Cluster/Harmony.integration.PC15.pdf") |
|
|
48 |
Harmony.scATAC.PC15 <- Harmony.integration.reduceDimension(scATAC.object = scATAC.merge.pro, set.resolutions = seq(0.2, 1.2, by = 0.1), groups = "dataset", assay = "ATAC", PC = 15, npcs = 30) |
|
|
49 |
dev.off() |
|
|
50 |
saveRDS(Harmony.scATAC.PC15, file = "Harmony.scATAC.PC15.rds") |
|
|
51 |
#####################3.gene activity######################## |
|
|
52 |
#PC 15 |
|
|
53 |
gene.activities <- GeneActivity(Harmony.scATAC.PC15) |
|
|
54 |
# add the gene activity matrix to the Seurat object as a new assay and normalize it |
|
|
55 |
Harmony.scATAC.PC15[['ACTIVITY']] <- CreateAssayObject(counts = gene.activities) |
|
|
56 |
Harmony.scATAC.PC15 <- NormalizeData( |
|
|
57 |
object = Harmony.scATAC.PC15, |
|
|
58 |
assay = 'ACTIVITY', |
|
|
59 |
normalization.method = 'LogNormalize', |
|
|
60 |
scale.factor = median(Harmony.scATAC.PC15$nCount_ACTIVITY) |
|
|
61 |
) |
|
|
62 |
saveRDS(Harmony.scATAC.PC15, file = "Harmony.scATAC.PC15.rds") |