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Learning outcomes of Session 1
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• Learning about the history of quantum computing
• Understanding different technologies for building quantum computers
• The difference between classical computing and quantum computing
• A clear understanding of the fundamental concepts in quantum computing such as qubits, 

quantum gates and circuits, and measurement
• Distinguishing different complexity classes and where quantum can make a difference
• Exploration of different application of quantum computing
• Learning about the near-term and fault-tolerant quantum hardware developments
• Setting up a local environment to use Qiskit 1.0
• Learning the implementation of quantum gates, observables and primitives in Qiskit
• Understanding the transpilation of a circuit on a real quantum backend



A brief history of quantum computing
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• Quantum computing is the field of computation where we investigate the computational power 
and other properties of computation based on quantum mechanics

• These fundamental principles of quantum mechanics such as superposition, entanglement and 
interference are the main building blocks for the quantum computational theory

• The main ideas that built a foundation for quantum computing can be traced back to early 20th 
century (Planck, Bohr, Heisenberg, Schrodinger etc.)

• Starting in 1960s, there were some theoretical results, as well as earlier quantum algorithms 
(Simon’s, Deutsch-Jozsa, Bernstein-Vazirani)



A brief history of quantum computing
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• One big breakthrough was Shor’s algorithm in 1994 about prime decomposition for RSA 
cryptography

• Since then, quantum computing has become a very impactful area at the intersection of physics, 
computer science, mathematics, chemistry and many other disciplines!

First usage of the word Quantum Information Theory in Bennett’s notebook IBM – MIT Conference on the Physics of Computation, 1981



What does a quantum computer look like?
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Image source: https://www.science.org/content/article/scientists-are-close-building-quantum-computer-can-beat-conventional-one



Superconducting qubits
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IBM Quantum chip, 2021 (IBM Official)

IBM Quantum Computer, golden chandelier design
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Image: IBM_Cleveland quantum system located at the Lerner Research Institute - Cleveland Clinic, 127 qubits

One of the largest quantum computers in the world



Classical computing

8
IBM Quantum

CL
AS

SI
CA

L
CO

M
PU

TI
N

G

• Numerical values
• Vectors/matrices
• Graphs
• Images
• Text
• …

“Quantum”

• Basic arithmetic
• Linear/matrix algebra
• Regression
• Statistical analysis
• Machine learning
• …

Solution to the computational task 

INPUT COMPUTATION OUTPUT

01010001 
01110101 
01100001 
01101110 
01110100 
01110101 
01101101

0
1
0
1
0
0
0
1

0
1
1
1
0
0
0
1

“qUANTUM”

01110001 
01010101 
01000001 
01001110 
01010100 
01010101 
01001101



From bits to quantum bits (qubits)
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• Qubits and in general quantum computations take place in a Hilbert space, that is a complete 
inner product space (a complex vector space)

• Qubits can be in the superposition of 0 and 1 states.
For basis states |0> = 1

0  and |1> = 0
1  , we can have

𝛼𝛼0 |0> + 𝛼𝛼1 |1> where | 𝛼𝛼0|2+ | 𝛼𝛼1|2 =1  

• Polarized sunglasses is a good analogy for a 
quantum system where qubits are polarized 
photons. Say horizontal polarization is the qubit |0> 
and vertical polarization |1>. 

Image source: https://www.cyberphysics.co.uk/topics/light/polarised_spex.htm
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Classical Bits

Quantum Qubits

Source: IBM Quantum Challenge 2021

0 1

0  1

𝜓𝜓 = 𝑎𝑎 0 + 𝑏𝑏 1

𝑎𝑎 2 + 𝑏𝑏 2 = 1 𝑎𝑎, 𝑏𝑏 ∈ ℂ

Superposition! 

𝑃𝑃0 = 𝑎𝑎 2,𝑃𝑃1 = 𝑏𝑏 2

𝑃𝑃0 = ⟨0|𝜓𝜓⟩ 2 = 𝑎𝑎⟨0 0 + 𝑏𝑏⟨0 1 2 = 𝑎𝑎 2
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P-Classical Superposition

Quantum Superposition

Source: IBM Quantum Challenge 2021

0

1

What about probabilistic classical systems 
(with 𝑝𝑝0, 𝑝𝑝1 ∈ ℝ)?

Sure, you can prepare a probabilistic 
“superposition”, but using copies on more 
computational resources.

𝑠𝑠 = 𝑝𝑝0(0) + 𝑝𝑝1(1)

Bit A, in state 0, 
selected with 
probability 𝑝𝑝0

Bit B, in state 0, 
selected with 
probability 𝑝𝑝1

0  1

𝜓𝜓 = 𝑎𝑎 0 + 𝑏𝑏 1

𝑎𝑎 2 + 𝑏𝑏 2 = 1 𝑎𝑎, 𝑏𝑏 ∈ ℂ

Superposition! 

𝑃𝑃0 = 𝑎𝑎 2,𝑃𝑃1 = 𝑏𝑏 2

𝑃𝑃0 = ⟨0|𝜓𝜓⟩ 2 = 𝑎𝑎⟨0 0 + 𝑏𝑏⟨0 1 2 = 𝑎𝑎 2



12
IBM Quantum

Classical Entangled bits

Quantum Entangled qubits

Measuring bit 0 has no “effect” on bit 2

0 1 0 1

Qubits can be entangled:

If you measure 𝑞𝑞0 to be in 0 , you 
know 𝑞𝑞2 is also in 0 .

𝜓𝜓 = 1
√2

( 0101 + 1010 )

𝑞𝑞3𝑞𝑞2𝑞𝑞1𝑞𝑞0

Here, we use “littlendian” ordering:

Bits     0             1             2            3

States
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Classical Entanglement

Quantum Entanglement

Correlations exist in classical systems. You 
can prepare a state like this classically, but

(a) Using a copy of resources

(b) Measurement of bit 0 doesn’t affect bit 
2, it reveals which copy you have

Qubits can be entangled, with different 
entanglements in different superpositions 
on a single set of qubits:

If you measure 𝑞𝑞0 to be in 0 , you know 𝑞𝑞2 
is also in 0 .

𝑠𝑠 = 𝑝𝑝0(0101) + 𝑝𝑝1(1010)

4-bit copy A, in state 
0101, selected with 
probability 𝑝𝑝0

4-bit copy B, in state 
1010, selected with 
probability 𝑝𝑝1

𝜓𝜓 = 1
√2

( 0101 + 1010 )

𝑞𝑞3𝑞𝑞2𝑞𝑞1𝑞𝑞0

Here, we use “littlendian” ordering:
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Classical Bits

Quantum Qubits

A single set of 𝑁𝑁 bits can be in any one 
of 2𝑁𝑁 possible states.

A single set of 𝑁𝑁 qubits can be in a 
superposition of ALL 2𝑁𝑁 possible 
states, simultaneously.

(0000), (0001), (0010), (0011)…

…(1100), (1101), (1110), (1111) 

N = 4 possible states

𝜓𝜓 = 𝑐𝑐0 0001 + 𝑐𝑐1 0001 + ⋯

+ 𝑐𝑐14 1110 + 𝑐𝑐15 1111 𝑐𝑐𝑖𝑖 ∈ ℂ



Visual representation of qubits
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• A convenient way to picture these quantum states (single qubits) is Bloch sphere.

𝜓𝜓 > =  𝛼𝛼 0 >  + 𝛽𝛽|1 > =  cos 𝜃𝜃
2

 |0 >  + 𝑒𝑒𝑖𝑖𝑖𝑖 sin 𝜃𝜃
2

 |1 > 

|+> |->

Image source: https://www.sharetechnote.com/html/QC/QuantumComputing_BlochSphere.html
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Measurement

Measuring the state of a qubit, 
even one in superposition, yields a 
0  or a 1 .

The probability of measuring these 
states is related to the coefficients 
in the state vector.

The probabilities to the right are 
measured in the absence of noise.

𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇0,1𝑅𝑅𝑦𝑦,0
𝜋𝜋
6

𝐻𝐻0 𝜓𝜓 ≈ 0.50 0 0 + 0.866 1 1

H, above  and in the diagram, is the Hadamard 
gate, not to be confused with the Hamiltonian.
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Unitaries

Time evolution in quantum is 
described by the Schrödinger 
equation.

This means unitary matrices,
which leads to unitary gates.

It also gives us complex coefficients.

𝑖𝑖𝑖
𝑑𝑑
𝑑𝑑𝑑𝑑

𝜓𝜓 𝑡𝑡 = 𝐻𝐻 𝜓𝜓 𝑡𝑡
→ 𝜓𝜓 𝑡𝑡 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓 𝑡𝑡 = 0

Schrödinger equation:

Unitary operators:

𝑈𝑈†𝑈𝑈 = 𝑒𝑒𝑖𝑖𝐻𝐻†𝑡𝑡𝑒𝑒−𝑖𝑖𝐻𝐻𝑡𝑡 = 1 → reversibility

𝑈𝑈 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 is unitary!

H is the Hamiltonian, the operator describing the energy of the system, different from case to case, not to be confused with the Hadamard gate.
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Classical Gates

Quantum Unitary Gates

Classical gates may or may not be 
unitary

Quantum gates are unitary.

XOR1 A B A XOR B

0 0 0

1 0 1

0 1 1

1 1 0

CNOT x y output

|0⟩ |0⟩ |00⟩

|1⟩ |0⟩ |11⟩

|0⟩ |1⟩ |01⟩

|1⟩ |1⟩ |10⟩

Reversible!

𝑥𝑥 𝑦𝑦 → |𝑥𝑥, 𝑥𝑥 ⊕ 𝑦𝑦⟩

A
B out

1Source: Wikipedia Commons



Operating on qubits
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• Since we model qubits as complex vectors in Hilbert space, we operate on a quantum state with 
linear transformations, hence matrices!

• In this case, the matrices must be unitary matrices, that is 𝑈𝑈†𝑈𝑈 = 𝐼𝐼. So, potentially all the 
elements of SU(n).

• For single qubits, we have very commonly used matrices called Pauli matrices.

𝜎𝜎𝑥𝑥 = 0 1
1 0 ,𝜎𝜎𝑦𝑦 = 0 −𝑖𝑖

𝑖𝑖 0 , 𝜎𝜎𝑧𝑧 = 1 0
0 −1

• We have larger unitary matrices for multi-qubit operations (4x4 for 2-qubits etc.)

• Now, we can think about these as quantum gates and build quantum circuits
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Classical Gates

Quantum Unitary Gates

Classical gates may or may not be 
unitary

Quantum gates are unitary.

XOR1 A B A XOR B

0 0 0

1 0 1

0 1 1

1 1 0

CNOT x y output

|0⟩ |0⟩ |00⟩

|1⟩ |0⟩ |01⟩

|0⟩ |1⟩ |10⟩

|1⟩ |1⟩ |01⟩

Reversible!

𝑥𝑥 𝑦𝑦 → |𝑥𝑥 ⊕ 𝑦𝑦, 𝑥𝑥⟩

A
B out

1Source: Wikipedia Commons



An example of quantum circuit
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Qubits 
initialized 
at 0 state

Classical bits 
for 

measurement

Hadamard gate, puts 
the qubit into 

uniform 
superposition of 0 

and 1 states

𝐻𝐻 =
1
2

1 1
1 −1

An entangling gate that call 
CNOT gate

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Measuring the 
qubits onto 

classical bits to 
get the state 0 or 

1.

Some extra post-
measurement gates 

that are problem 
specific
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Foundations - differences Quantum 

Superposition _                              
_

Entanglement _                                
_

Interference

Measure a single state

Unitary gates

Complex coefficients

Classical

On or off – probabilistic 
“superposition” has cost

Independent system states –
“entanglement” possible

No interference

Measure a single state

Unitary & non-unitary gates

Real coefficients

Are these attributes of quantum better in all cases?

No. They’re different. So where can they bring value?
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Understanding complexities

P (polynomial): problems that 
can be solved in polynomial 
time.

NP – (non-deterministic 
polynomial): Can check a 
solution in polynomial time, but 
can’t find one in polynomial 
time.

NP Complete: NP-Hard 
problems also in NP, solutions 
of which map to solve all NP.

NP Hard: Problems as hard as 
the hardest problems in NP.

BQP (Bounded-error quantum 
polynomial): solvable by a 
quantum computer in 
polynomial time, with an error 
probability of at most 1/3

Some complexity classes, under the assumption that P is 
not equal to NP. Note all class assignments are subject to 
the uncertainty of complexity class structure.

BQP

P

NP

NP-Hard

NP-Complete

𝑡𝑡 𝑛𝑛 = 𝑐𝑐0 + 𝑐𝑐1𝑛𝑛 + 𝑐𝑐2𝑛𝑛2 + ⋯𝑐𝑐𝑚𝑚𝑛𝑛𝑚𝑚 
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Understanding complexities

Max-cut problem & Travelling 
salesperson problem

Protein folding 
(hydrophobic/hydrophilic, self-
avoiding model)

Prime factoring

Some complexity classes, under the assumption that P is 
not equal to NP. Note all class assignments are subject to 
the uncertainty of complexity class structure.

BQP

P

NP

NP-Hard

NP-Complete

𝑡𝑡 𝑛𝑛 = 𝑐𝑐0 + 𝑐𝑐1𝑛𝑛 + 𝑐𝑐2𝑛𝑛2 + ⋯𝑐𝑐𝑚𝑚𝑛𝑛𝑚𝑚 



What can we do with quantum computers?
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Faster and more 
accurate 
solutions!

.  .  .

More durable 
materials resisting 

corrosion
.  .  .

RSA 
cryptography/prime 

factorization

Natural language 
processing

.  .  .



What’s next in quantum?

26IBM Quantum Image from: https://www.ibm.com/quantum/technology



Questions
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Conclusions:

o Quantum computing is different from 
classical computing

o The differences are what make it 
valuable:

o Superposition, entanglement

o Unitary operations

o Groundbreaking research is already 
emerging at the utility scale
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