[f539ea]: / SessionIV_QML / multiomics_qml.py

Download this file

176 lines (143 with data), 7.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import pandas as pd
import time
import matplotlib
from glob import glob
import os
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('dark')
# ====== Scikit-learn imports ======
from sklearn.svm import SVC
from sklearn.metrics import (
auc,
roc_curve,
ConfusionMatrixDisplay,
f1_score,
balanced_accuracy_score,
)
from sklearn.preprocessing import StandardScaler, LabelBinarizer
from sklearn.model_selection import train_test_split
# ====== Qiskit imports ======
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter
from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap
from qiskit_algorithms.optimizers import COBYLA, L_BFGS_B
from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier, VQC
from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN
from qiskit_machine_learning.circuit.library import QNNCircuit
from qiskit.circuit.library import ZZFeatureMap, ZFeatureMap, PauliFeatureMap
from qiskit_aer import AerSimulator
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_algorithms.utils import algorithm_globals
from qiskit.primitives import Sampler
from qiskit_ibm_runtime.fake_provider import FakeManilaV2
from qiskit_algorithms.state_fidelities import ComputeUncompute
from qiskit_machine_learning.kernels import FidelityQuantumKernel
from qiskit_machine_learning.algorithms import QSVC, PegasosQSVC
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
def compute_svc(X_train, y_train, X_test, y_test, c = 1):
beg_time = time.time()
svc = SVC(C=c)
# y_train = torch.argmax(torch.tensor(y_train, dtype=torch.float32),dim=1)
# y_test = torch.argmax(torch.tensor(y_test, dtype=torch.float32),dim=1)
svc_vanilla = svc.fit(X_train, y_train)
labels_vanilla = svc_vanilla.predict(X_test)
f1_svc = f1_score(y_test, labels_vanilla, average='micro')
print("Time taken for SVC (secs): ", time.time() - beg_time)
print("F1 SVC: ", f1_svc)
return f1_svc
def compute_QSVC(X_train, y_train, X_test, y_test, encoding='ZZ', c = 1, pegasos=True):
beg_time = time.time()
#service = QiskitRuntimeService(instance="accelerated-disc/internal/default")
service = QiskitRuntimeService()
backend = AerSimulator(method='statevector')
algorithm_globals.random_seed = 12345
feature_map = None
if encoding == 'ZZ' :
feature_map = ZZFeatureMap(feature_dimension=X_train.shape[1],
reps=2,
entanglement='linear')
else:
if encoding == 'Z':
feature_map = ZFeatureMap(feature_dimension=X_train.shape[1],
reps=2)
if encoding == 'P':
feature_map = PauliFeatureMap(feature_dimension=X_train.shape[1],
reps=2, entanglement='linear')
sampler = Sampler()
fidelity = ComputeUncompute(sampler=sampler)
Qkernel = FidelityQuantumKernel(fidelity=fidelity, feature_map=feature_map)
qsvc = QSVC(quantum_kernel=Qkernel, C=c)
qsvc_model = qsvc.fit(X_train, y_train)
labels_qsvc = qsvc_model.predict(X_test)
f1_qsvc = f1_score(y_test, labels_qsvc, average='micro')
f1_peg_qsvc = 0
if pegasos == True:
peg_qsvc = PegasosQSVC(quantum_kernel=Qkernel, C=c)
peg_qsvc_model = peg_qsvc.fit(X_train, y_train)
labels_peg_qsvc = peg_qsvc_model.predict(X_test)
f1_peg_qsvc = f1_score(y_test, labels_peg_qsvc, average='micro')
print("Time taken for QSVC (secs): ", time.time() - beg_time)
print("F1 QSVC: ", f1_qsvc)
return f1_qsvc,f1_peg_qsvc
def compute_estimator_QNN(X_train, y_train, X_test, y_test, primitive: str):
beg_time = time.time()
if primitive == 'estimator':
# construct QNN with the QNNCircuit's default ZZFeatureMap feature map and RealAmplitudes ansatz.
qc_qnn = QNNCircuit(num_qubits=X_train.shape[1])
estimator_qnn = EstimatorQNN(circuit=qc_qnn)
# QNN maps inputs to [-1, +1]
estimator_qnn.forward(X_train[0, :], algorithm_globals.random.random(estimator_qnn.num_weights))
# construct neural network classifier
estimator_classifier = NeuralNetworkClassifier(estimator_qnn, optimizer=COBYLA(maxiter=100))
# fit classifier to data
estimator_classifier.fit(X_train, y_train)
f1_score_estimator_qnn = estimator_classifier.score(X_test, y_test)
print("Time taken for Sampler QNN (secs): ", time.time() - beg_time)
print("F1 Estimator QNN: ", f1_score_estimator_qnn)
return f1_score_estimator_qnn
if primitive == 'sampler':
# construct a quantum circuit from the default ZZFeatureMap feature map and a customized RealAmplitudes ansatz
qc_sampler = QNNCircuit(ansatz=RealAmplitudes(X_train.shape[1], reps=1))
# parity maps bitstrings to 0 or 1
def parity(x):
return "{:b}".format(x).count("1") % 2
output_shape = 2 # corresponds to the number of classes, possible outcomes of the (parity) mapping
# construct QNN
sampler_qnn = SamplerQNN(circuit=qc_sampler, interpret=parity,output_shape=output_shape,)
# construct classifier
sampler_classifier = NeuralNetworkClassifier(neural_network=sampler_qnn, optimizer=COBYLA(maxiter=100))
# fit classifier to data
sampler_classifier.fit(X_train, y_train)
f1_score_sampler_qnn = sampler_classifier.score(X_test, y_test)
print("Time taken for Sampler QNN (secs): ", time.time() - beg_time)
print("F1 Sampler QNN: ", f1_score_sampler_qnn)
return f1_score_sampler_qnn
if __name__ == "__main__":
path = '/dccstor/boseukb/CuNA/data/BrCa/'
all_files = []
for f in os.listdir(path):
if f.endswith(".csv"):
all_files.append(f)
results_dict = {}
for i in range(1,11):
print('Iteration ', i)
fs = [x for x in all_files if 'iter'+str(i)+'_' in x]
f_train = [x for x in fs if 'train' in x][0]
f_test = [x for x in fs if 'test' in x][0]
df_train = pd.read_csv(path+f_train)
df_test = pd.read_csv(path+f_test)
X_train = df_train[[str(x) for x in list(range(10))]].values
y_train = df_train['y'].map({'LumA':0, 'LumB': 1}).values
X_test = df_test[[str(x) for x in list(range(10))]].values
y_test = df_test['y'].map({'LumA':0, 'LumB': 1}).values
c = 10
f1_svc = compute_svc(X_train, y_train, X_test, y_test, c)
f1_qsvc, f1_peg_qsvc = compute_QSVC(X_train, y_train, X_test, y_test, c=c)
f1_est_qnn = compute_estimator_QNN(X_train, y_train, X_test, y_test, 'estimator')
f1_sam_qnn = compute_estimator_QNN(X_train, y_train, X_test, y_test, 'sampler')
results_dict[i] = [f1_svc, f1_qsvc, f1_peg_qsvc, f1_est_qnn, f1_sam_qnn]
df = pd.DataFrame.from_dict(results_dict, orient='index')
df.to_csv('/dccstor/boseukb/Q/ML/v2/BrCa_results_comparison_10PCs_v2.csv',
index=False, header=['SVC', 'QSVC', 'PEG_QSVC', 'EST_QNN', 'SAM_QNN'])