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Learning outcomes of Session 2
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• Learning different transpilation strategies for quantum circuits
• Running noiseless simulations with the primitives
• Learning how to submit a job to a quantum backend
• Learning the overall structure of variational quantum algorithms (VQAs)
• Analyzing the individual components for problem-specific VQAs
• Learning and proving the variational theorem of quantum mechanics
• Understanding how to train parametrized circuits for quantum machine learning applications
• Different encoding methods for data loading
• More in-depth discussion about implementing quantum support vector classifiers (QSVC)



Variational quantum algorithms (VQA)
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• Near-term hybrid quantum-classical algorithms based on the variational theorem of quantum 
mechanics

• These algorithms can leverage the utility provided by today's non-fault-tolerant quantum 
computers, making them ideal candidates to achieve quantum advantage

• Variational algorithms are very commonly used in near term quantum optimization and quantum 
machine learning (QML) algorithms in various forms.

• Variational algorithms include several modular components that can be combined and optimized 
based on algorithm, software, and hardware advancements



A typical simplified hybrid workflow
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Components of VQA
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Most common components are:

• A cost function that describes a specific problem with a set of parameters,

• An ansatz to express the search space with these parameters,

• An optimizer to iteratively explore the search space.

• During each iteration, the optimizer evaluates the cost function with the current parameters and selects the 
next iteration's parameters until it converges on an optimal solution. The hybrid nature of this family of 
algorithms comes from the fact that the cost functions are evaluated using quantum resources and 
optimized through classical ones.



Variational quantum algorithms
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A typical variational circuit setup 
for machine learning problems

A typical variational circuit setup 
for optimization problems



Why does this work?
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• A small digression into mathematics and quantum mechanics:

Initialized at all 0 state, a reference 
state is constructed with unitary 𝑈𝑈𝑅𝑅. 
Then the parametrized ansatz is 
applied to get to the target state 
| ⟩𝜓𝜓(𝜃𝜃) .

• Variational theorem ensures that the we can sample the lowest eigenvalue of the Hamiltonian of 
the system to approximate the solution. 

• We can start by writing the Hamiltonian of the system via spectral decomposition:

where 𝜆𝜆𝑘𝑘  are eigenvalues and | ⟩𝜙𝜙𝑘𝑘  are eigenstates. 



Why does this work?
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• We can calculate the expected energy of a system (expectation value 
of the observable):

• We can show that the calculated expectation 
value is always higher than the ground state 
energy of the system:

Assuming 𝜆𝜆0 ≤ 𝜆𝜆𝑘𝑘  
for all 𝑘𝑘. This is the sum of all probabilities 

of measuring | ⟩𝜙𝜙𝑘𝑘  which adds up 
to 1.



Variational theorem of quantum mechanics
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• Then considering the cost function, we can minimize the parameters to get close to the ground state solution:

• If the normalized state | ⟩𝜓𝜓  of a quantum system depends on a parameter vector �⃗�𝜃, then the optimal 
approximation of the ground state (i.e. eigenstate | ⟩𝜙𝜙0  with the minimum eigenvalue 𝜆𝜆0) is the one that 
minimizes the expectation value of the Hamiltonian �𝐻𝐻: 

• We also make the following mathematical assumptions:
• A finite lower bound to the energy 𝐸𝐸 ≥ 𝜆𝜆0 > −∞ needs to exist
• Upper bounds do not generally exist



How to set up a variational algorithm
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N-local ansatz

Hardware efficient ansatz

Problem specific ansatz for optimization

Problem specific ansatz for quantum machine learning
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How to set up a variational algorithm

• Qiskit library offers various ways to 
implement Cost functions as a sum of 
Pauli operators.

• The primitives Estimator and Sampler can 
be used to compute expectation values of 
the operators in the variational loop.

• Supports local and global classical 
optimizers. Depending on the application 
instance, you can choose gradient-based 
or gradient-free optimizers to update the 
parameters in the variational form.



Quantum machine learning
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• Machine learning has established itself as a successful interdisciplinary field which seeks to find patterns in data. 
Throwing in quantum computing gives rise to interesting areas of research that aim to use the principles of 
quantum mechanics to augment machine learning, or vice-versa.

Supervised learning Unsupervised learning Reinforcement learning



Quantum machine learning
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• Recently, most of the focus of CQ approaches 
to machine learning has been on near-term 
algorithms that can be executed on the 
current quantum devices. 

• Note that QML is still an active research area 
where we are already seeing results 
competitive with classical ML methods.

• Many quantum algorithms have been 
proposed for QML, spanning all supervised, 
unsupervised and reinforcement learning 
models.



Data encoding
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• Data representation is crucial for the success of machine learning models. For classical machine learning, the 
problem is how to represent the data numerically, so that it can be best processed by a classical machine 
learning algorithm.

• For quantum machine learning, this question is similar, but more fundamental: how to represent and efficiently 
input the data into a quantum system, so that it can be processed by a quantum machine learning algorithm. 
This is usually referred to as data encoding but is also called data embedding or loading.

• Some common methods are:

• Basis encoding
• Amplitude encoding
• Angle encoding
• Arbitrary encoding

Image from: Quantum Embedding Search for Quantum Machine Learning, NamNguyen and Kwang-Chen Chen, IEEE



Data encoding
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• Given a data set with M samples, each with N features:
𝐷𝐷 = { 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑀𝑀} where each 𝑥𝑥𝑖𝑖  is an N dimensional vector.

• Basis encoding

Basis encoding associates a classical N-bit string 
with a computational basis state of an N-qubit 
system. Essentially, each data point must be an N-
bit string 𝑥𝑥𝑖𝑖 = (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑁𝑁) which will be 
mapped to a quantum state | ⟩𝑥𝑥𝑚𝑚 = | ⟩𝑏𝑏1𝑏𝑏2 … 𝑏𝑏𝑁𝑁  
with 𝑏𝑏𝑗𝑗 ∈ {0,1}. Then we can represent the entire 
data set as superpositions of computational basis 
states:

| ⟩𝐷𝐷 =
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀

| ⟩𝑥𝑥𝑚𝑚

• Amplitude encoding

Amplitude encoding encodes data into the amplitudes of a 
quantum state. To encode the data set 𝐷𝐷, we concatenate all 
M vectors (each of dimension N) into one amplitude vector of 
length 𝑀𝑀 × 𝑁𝑁:

𝛼𝛼 = 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚(𝑥𝑥11, … , 𝑥𝑥𝑁𝑁1 , … 𝑥𝑥1𝑚𝑚, … 𝑥𝑥𝑁𝑁𝑚𝑚)

Where 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚 is a normalization factor such that 𝛼𝛼 2 = 1. 
Then we have:

| ⟩𝐷𝐷 = �
𝑖𝑖=1

𝑁𝑁

𝛼𝛼𝑖𝑖| ⟩𝑖𝑖



Data encoding
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• Given a data set with M samples, each with N features:
𝐷𝐷 = { 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑀𝑀} where each 𝑥𝑥𝑖𝑖  is an N dimensional vector.

• Angle encoding
Angle encoding encodes N features into the rotation angles of n qubits for 𝑁𝑁 ≤ 𝑛𝑛. For example, the data point x =
(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁) can be encoded as follows:

| ⟩𝑥𝑥 = ⨂𝑖𝑖=1
𝑁𝑁 cos 𝑥𝑥𝑖𝑖 | ⟩0 + sin(𝑥𝑥𝑖𝑖)| ⟩1  

This is different from the previous two encoding methods, as it only encodes one data point at a time, rather than a whole 
dataset. It does, however, only require N qubits or less and a constant depth quantum circuit, making it amenable to 
current quantum hardware.

We can specify the angle encoding as a unitary:

𝑆𝑆𝑥𝑥𝑗𝑗 = ⨂𝑖𝑖=1
𝑁𝑁 𝑈𝑈(𝑥𝑥𝑗𝑗𝑖𝑖) 



Quantum Support Vector Classifier (QSVC)
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• Variational quantum classifier (VQC) is the simplest classifier available in Qiskit Machine Learning and is a good 
starting point for newcomers to quantum machine learning who have a background in classical machine 
learning.

•  Two of its central elements are the feature map and ansatz.

• Our data is classical, meaning it consists of a set of bits, not qubits. We need a way to encode the data as 
qubits. This process is crucial if we want to obtain an effective quantum model. This is the role of the feature 
map. While feature mapping is a common ML mechanism, this process of loading data into quantum states 
does not appear in classical machine learning as that only operates in the classical world.



Variational quantum classifier
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• The variational quantum classifier is a 
variational algorithm where the measured 
expectation value is interpreted as the output 
of a classifier, introduced by multiple groups in 
2018.

• Very commonly used for classification 
problems (especially binary classification), 
hence it is a supervised learning algorithm.

• Like the classical vector classifiers, after 
encoding the data as a quantum state, we train 
the variational ansatz to converge to optimal 
weights using the cost function. 
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