[b798eb]: / src / model.py

Download this file

143 lines (128 with data), 4.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
## ====== Torch imports ======
import torch
import pytorch_lightning as pl
import torch.nn as nn
import torch.optim as optim
from lightning.pytorch.utilities.types import OptimizerLRScheduler
import torch.utils.data
from torch.nn import functional as F
import lightning.pytorch.loggers
from torchmetrics import ConfusionMatrix
from torchmetrics.classification import F1Score
from sklearn.metrics import f1_score, confusion_matrix
class LModel(pl.LightningModule):
def __init__(self,
dim: int = None,
output_dim: int = 8,
batch_size: int = 20,
lr: float = 1e-2,
weight_decay: float=1e-3,
):
super().__init__()
self.init_dim = dim,
self.batch_size = batch_size
self.lr = lr
self.weight_decay = weight_decay
self.output_dim = output_dim,
#self.loss_fun = nn.CrossEntropyLoss()
self.loss_fun = nn.BCELoss()
self.f1 = F1Score(task='binary', average='micro')
self.test_preds = None
self.test_labels = None
self.embedder = nn.Sequential(
nn.Linear(dim,2**12),
nn.LeakyReLU(),
# nn.Linear(2**12, 2**10),
# nn.LeakyReLU(),
# nn.Linear(2**10, 2**8),
# nn.LeakyReLU(),
nn.Linear(2**12, 2**8),
nn.LeakyReLU(),
nn.Linear(2**8, 2**6),
nn.LeakyReLU(),
nn.Linear(2**6, output_dim),
nn.LeakyReLU()
)
self.classifier = nn.Sequential(
#nn.Linear(2**4,2**3),
#nn.LeakyReLU(),
nn.Linear(output_dim,1),
nn.Softmax(dim=1)
)
def forward(self, x):
x = self.embedder(x)
x = self.classifier(x)
return x
def on_train_epoch_start(self) -> None:
self.train_loss = 0
def training_step(self, batch):
X_batch, y_batch = batch
y = y_batch.unsqueeze(1)
#y_float = y.float()
X_embedded = self.embedder(X_batch)
y_pred = self.classifier(X_embedded)
loss = self.loss_fun(y_pred, y)
f1 = self.f1(y_pred, y)
#loss = self.loss_fun(y_pred, y_batch)
# loss = (self.loss_fun(y_pred,y_batch) + torch.sum(torch.cat([torch.flatten(torch.abs(x)) for x in self.embedder.parameters() ]))*.0016
# + torch.sum(torch.cat([torch.flatten(torch.square(x)) for x in self.embedder.parameters() ]))*.00255 )
# acc = (y_pred.max(1).indices == y_batch.max(1).indices).sum().item()/y_pred.shape[0]
self.log("train_loss",
loss,
prog_bar=False,
on_step=False,
on_epoch=True)
self.log("train_acc",
f1,
prog_bar=False,
on_step=False,
on_epoch=True)
return loss
def validation_step(self, batch):
print("Entered validation")
X_batch, y_batch = batch
y = y_batch.unsqueeze(1)
#y_float = y.float()
X_embedded = self.embedder(X_batch)
y_pred = self.classifier(X_embedded)
#loss = self.loss_fun(y_pred,y_batch)
loss = self.loss_fun(y_pred, y)
f1 = self.f1(y_pred, y)
print(f1)
self.log("val_loss",
loss,
prog_bar=False,
on_step=False,
on_epoch=True)
self.log("val_acc",
f1,
prog_bar=False,
on_step=False,
on_epoch=True)
return loss
def configure_optimizers(self) -> OptimizerLRScheduler:
optimizer = torch.optim.AdamW(list(self.embedder.parameters()) +
list(self.classifier.parameters()),
lr=self.lr,
weight_decay=self.weight_decay)
return optimizer
def test_step(self, batch):
X_batch,y_batch = batch
y = y_batch.unsqueeze(1)
#y_float = y.float()
y_pred = self(X_batch)
loss = self.loss_fun(y_pred, y)
f1 = self.f1(y_pred, y)
#acc = (y_pred.max(1).indices == y_batch.max(1).indices).sum().item()/y_pred.shape[0]
#X_embedded = self.embedder(X)
self.log("test_loss",
loss,
on_step=False,
on_epoch=True)
self.log("test_acc",
f1,
on_step=False,
on_epoch=True)
return {'loss': loss,
'f1score': f1}