[b798eb]: / src / main.py

Download this file

442 lines (376 with data), 15.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
""" Quantum machine learning on neural network embeddings
Returns:
Performance metrics on neural network, support vector classifier, and quantum support vector classifier
"""
### Author: Aritra Bose <a.bose@ibm.com>
### MIT license
### --- base class imports --- ###
import pandas as pd
import numpy as np
import argparse
import os
import copy
from time import strftime, gmtime
#import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('dark')
# ====== Torch imports ======
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
import pytorch_lightning as pl
from torchmetrics import ConfusionMatrix, F1Score
# ====== Scikit-learn imports ======
from sklearn.svm import SVC
from sklearn.metrics import (
auc,
roc_curve,
ConfusionMatrixDisplay,
f1_score,
balanced_accuracy_score,
)
from sklearn.preprocessing import StandardScaler, LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
# ====== Qiskit imports ======
from qiskit.circuit.library import ZZFeatureMap, ZFeatureMap, PauliFeatureMap
from qiskit import QuantumCircuit
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_algorithms.utils import algorithm_globals
from qiskit.primitives import Sampler
from qiskit_aer import AerSimulator
from qiskit_algorithms.state_fidelities import ComputeUncompute
from qiskit_machine_learning.kernels import FidelityQuantumKernel
from qiskit_machine_learning.algorithms import QSVC, PegasosQSVC
# ====== Local imports ======
from model import LModel
from dataset import OmicsData
def parse_args():
"""Parse the input command line args using argparse
Returns:
Dictionary of parsed arguments.
"""
parser = argparse.ArgumentParser(
prog="quantum machine learning on multi-omics",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"-f",
"--file",
type=str,
default=None,
help="Multi-omics data file"
)
parser.add_argument(
"-cv",
"--num_cv",
type=int,
default = 1,
help="Number of cross-validation folds"
)
parser.add_argument(
"-e", "--epoch",
type=int,
default=100,
help="Number of training epochs"
)
parser.add_argument(
"-b",
"--batch_size",
type=int,
default=20,
help="Train/test batch size"
)
parser.add_argument(
"-lr",
"--lr",
type=float,
default=1e-3,
help="learning rate"
)
parser.add_argument(
"-l2",
"--weight_decay",
type=float,
default=1e-5,
help="L2 regularization"
)
parser.add_argument(
"-p",
"--patience",
type=int,
default=3,
help="Early stopping patience"
)
parser.add_argument(
"-i",
"--iter",
type=int,
default=1,
help="Number of iterations"
)
parser.add_argument(
"-d",
"--dim",
type=int,
default=8,
help="Number of dimensions for the neural network embedding"
)
parser.add_argument(
"-c",
"--C",
type=int,
default=1,
help="Regularization parameter for SVC"
)
parser.add_argument(
"-pq",
"--pegasos",
type=bool,
default=False,
help="Flag to use PegasosQSVC"
)
parser.add_argument(
"-en",
"--encoding",
type=str,
default="ZZ",
choices=['ZZ', 'Z', 'P'],
help="Econding for QML"
)
args = parser.parse_args()
return args
def validate_args(args):
"""Validate the arguments
Args:
args (dictionary): The argument dictionary as returned by parse_args().
Raises:
ValueError: Input file path error if incorrect path provided.
"""
if args.file is None or os.path.exists(args.file) is None:
raise ValueError("Input file path error!")
def process_data(file):
"""Process the data file
Args:
file (path): Path of the .csv file with the following column structure:
[Sample ID, Genes..., label]
label should contain the header of y in the .csv file
Returns:
numpy ndarrays pertaining to the splits of the training and held out test data.
"""
df = pd.read_csv(file)
y = df['y'].values.astype(float)
X = df[df.columns[1:-1]].values
# held-out master split
X_working, X_held_out, y_working, y_held_out = train_test_split(X,
y,
train_size=0.8,
shuffle=True)
return X_working, y_working, X_held_out, y_held_out
# def compute_metrics(y_hat, y):
# _, preds = torch.max(y_hat, 1)
# f1_score = F1Score(y, preds, average='micro')
# cm = ConfusionMatrix(y, preds)
# return f1_score, cm
def kfold_cross_validation(args, model, fname, X, y, k, early_stopping_patience, iter, **trainer_kwargs):
"""K Fold cross validation method to train the neural network model
Args:
args (dict): arguments dictionary with all the variables
model (LModel): The model object of LModel class
X (numpy ndarray): Training data
y (numpy array): Training labels
k (int): Number of cross validation to be conducted
early_stopping_patience (int): Patience for early stopping checks
iter (int): number of iterations of the whole pipeline
Returns:
best_model_weights (numpy ndarray): best model weights after training and validation
best_train_index (list): train indices which led to best model
"""
kfold = KFold(n_splits=k, shuffle=True)
best_model_weights = None
best_train_index = None
best_val_metric = float("-inf")
for fold, (train_index, val_index) in enumerate(kfold.split(X)):
print(f"Fold {fold+1}")
print(len(train_index))
print(len(val_index))
X_train, X_val = X[train_index], X[val_index]
y_train, y_val = y[train_index], y[val_index]
#create dataloaders
train_data = OmicsData(X_train,y_train)
val_data = OmicsData(X_val, y_val)
train_dataloader = DataLoader(train_data)
val_dataloader = DataLoader(val_data)
#rint(val_dataloader)
checkpoint_callback = ModelCheckpoint(
dirpath=f"checkpoints/{fname}/fold_{fold}",
save_top_k=1,
monitor="val_loss",
mode="min",
)
early_stopping = EarlyStopping(
monitor="val_loss",
patience=early_stopping_patience,
mode="min"
)
logger = TensorBoardLogger(save_dir="logs", name=f"{fname}_fold_{fold}")
trainer = pl.Trainer(
accelerator="gpu",
devices=1,
max_epochs=args.epoch,
callbacks=[early_stopping, checkpoint_callback],
accumulate_grad_batches=len(train_dataloader),
check_val_every_n_epoch=10,
logger=logger
)
trainer.fit(model=model,
train_dataloaders=train_dataloader,
val_dataloaders= val_dataloader)
val_metric = trainer.callback_metrics.get("val_acc")
print(val_metric)
if val_metric > best_val_metric:
best_val_metric = val_metric
best_model_weights = model.state_dict()
best_train_index = train_index.tolist()
return best_model_weights, best_train_index
def training(args, fname, X, y, iter):
"""Training method which calls the kfold cross validation code
Args:
args (dict): dictionary of arguments from input
fname (str): file name for storing checkpoints and embeddings
X (numpy ndarray): Training data
y (numpy array): Training labels
iter (int): number of iterations to conduct
Returns:
embedded_train (numpy ndarray): Embedded training data of size samples x output dimension
train_index (array): training indices
model (LModel): LModel object
model_weights (numpy ndarray): learned weights of the model
"""
num_feats = X.shape[1]
model = LModel(
dim=num_feats,
output_dim = args.dim,
batch_size=args.batch_size,
weight_decay=args.weight_decay,
lr=args.lr
)
model_weights, train_index = kfold_cross_validation(args,
model,
fname,
X,
y,
args.num_cv,
args.patience,
iter
)
model.load_state_dict(model_weights)
embedded_train = model.embedder(torch.tensor(X[train_index], dtype=torch.float32)).detach().numpy()
#print(embedded_train.shape)
return embedded_train, train_index, model, model_weights
def testing(X,y, model, model_weights):
test_data = OmicsData(X, y)
test_dataloader = DataLoader(test_data)
model.load_state_dict(model_weights)
X = torch.tensor(X, dtype=torch.float32)
embedded_test = model.embedder(torch.tensor(X, dtype=torch.float32)).detach().numpy()
print(embedded_test.shape)
trainer = pl.Trainer()
results = trainer.test(model=model, dataloaders=test_dataloader)
return results, embedded_test
def compute_svc(X_train, y_train, X_test, y_test, c = 1):
svc = SVC(C=c)
# y_train = torch.argmax(torch.tensor(y_train, dtype=torch.float32),dim=1)
# y_test = torch.argmax(torch.tensor(y_test, dtype=torch.float32),dim=1)
svc_vanilla = svc.fit(X_train, y_train)
labels_vanilla = svc_vanilla.predict(X_test)
f1_svc = f1_score(y_test, labels_vanilla, average='micro')
return f1_svc
def compute_QSVC(X_train, y_train, X_test, y_test, encoding='ZZ', c = 1, pegasos=False):
service = QiskitRuntimeService(instance="accelerated-disc/internal/default")
backend = service.least_busy(simulator=False, operational=True)
# service = QiskitRuntimeService()
# backend = AerSimulator(method='statevector')
algorithm_globals.random_seed = 12345
feature_map = None
if encoding == 'ZZ' :
feature_map = ZZFeatureMap(feature_dimension=X_train.shape[1],
reps=2,
entanglement='linear')
else:
if encoding == 'Z':
feature_map = ZFeatureMap(feature_dimension=X_train.shape[1],
reps=2)
if encoding == 'P':
feature_map = PauliFeatureMap(feature_dimension=X_train.shape[1],
reps=2, entanglement='linear')
sampler = Sampler(backend=backend,
options={"shots": 1024})
fidelity = ComputeUncompute(sampler=sampler)
Qkernel = FidelityQuantumKernel(fidelity=fidelity, feature_map=feature_map)
if pegasos == False:
qsvc = QSVC(quantum_kernel=Qkernel, C=c)
else:
qsvc = PegasosQSVC(quantum_kernel=Qkernel, C=c)
qsvc_model = qsvc.fit(X_train, y_train)
labels_qsvc = qsvc_model.predict(X_test)
f1_qsvc = f1_score(y_test, labels_qsvc, average='micro')
return f1_qsvc
if __name__ == "__main__":
args = parse_args()
validate_args(args)
file_name = os.path.basename(args.file).split('.')[0]
results_iter = {}
for i in range(args.iter):
print("===== Iteration " + str(i+1) + " =====")
#process data to obtain master split
X_working,y_working,X_held_out,y_held_out = process_data(args.file)
print("Training size: ", X_working.shape[0])
print("Held out size: ", X_held_out.shape[0])
fname = file_name + "_iter" + str(i)
#get embedded training data and the best performing model weights using cross validation
embedded_train, train_idx, model, model_weights = training(args,
fname,
X_working,
y_working,
i)
fname_train = fname + "_train_embedding"
np.save(f"checkpoints/{fname}/{fname_train}", embedded_train)
fname_train_y = fname + "_train_target"
np.save(f"checkpoints/{fname}/{fname_train_y}", y_working[train_idx])
results_dict, embedded_test = testing(X_held_out, y_held_out, model, model_weights)
results_nn = results_dict[0]
print("NN results on held-out data:", results_nn['test_acc'])
fname_test = fname + "_test_embedding"
np.save(f"checkpoints/{fname}/{fname_test}", embedded_test)
fname_test_y = fname + "_test_target"
np.save(f"checkpoints/{fname}/{fname_test_y}", y_held_out)
results_svc = compute_svc(
embedded_train,
y_working[train_idx],
embedded_test,
y_held_out,
args.C
)
print("SVC results on held-out data: " + str(results_svc))
results_qsvc = compute_QSVC(
embedded_train,
y_working[train_idx],
embedded_test,
y_held_out,
args.encoding,
args.C
)
print("QSVC results on held-out data: " + str(results_qsvc))
results_iter[i] = [results_nn['test_acc'], results_svc, results_qsvc]
results_df = pd.DataFrame.from_dict(results_iter, orient='index')
print(results_df)
str_time = strftime("%Y-%m-%d-%H-%M", gmtime())
of_name = file_name + "_" + str_time + "_Results.csv"
results_df.to_csv(of_name, index=False, header=['NN', 'SVC', 'QSVC'])
max_memory_allocated = torch.cuda.max_memory_allocated()
print(f"{max_memory_allocated/1024**3:.2f} GB of GPU memory allocated")