|
a |
|
b/src/ckpt_QML.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"## Quantum machine learning on lower-dimensional single-cell RNAseq data\n", |
|
|
8 |
"\n", |
|
|
9 |
"\n", |
|
|
10 |
"This notebook evaluates the following quantum machine learning models:\n", |
|
|
11 |
"\n", |
|
|
12 |
"* Quantum Support Vector Machine (QSVC) https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.algorithms.QSVC.html\n", |
|
|
13 |
"* Pegasos QSVC: https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.algorithms.PegasosQSVC.html\n", |
|
|
14 |
"* Neural Networks: https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.algorithms.NeuralNetworkClassifier.html\n", |
|
|
15 |
"* Variational Quantum Classifier (VQC): https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.algorithms.VQC.html\n", |
|
|
16 |
"\n", |
|
|
17 |
"\n", |
|
|
18 |
"It takes as input the lower dimensional embedding of the single-cell RNAseq data with eight dimension of the melanoma minimal residual diseases sample and predicts drug-administered melanoma v/s phase II of minimal residual disease. " |
|
|
19 |
] |
|
|
20 |
}, |
|
|
21 |
{ |
|
|
22 |
"cell_type": "code", |
|
|
23 |
"execution_count": null, |
|
|
24 |
"metadata": {}, |
|
|
25 |
"outputs": [], |
|
|
26 |
"source": [ |
|
|
27 |
"# ====== Base class imports ======\n", |
|
|
28 |
"\n", |
|
|
29 |
"import numpy as np\n", |
|
|
30 |
"import pandas as pd\n", |
|
|
31 |
"from glob import glob\n", |
|
|
32 |
"import matplotlib\n", |
|
|
33 |
"import os\n", |
|
|
34 |
"import matplotlib.pyplot as plt\n", |
|
|
35 |
"import seaborn as sns \n", |
|
|
36 |
"sns.set_style('dark')\n", |
|
|
37 |
"\n", |
|
|
38 |
"# ====== Scikit-learn imports ======\n", |
|
|
39 |
"\n", |
|
|
40 |
"from sklearn.svm import SVC\n", |
|
|
41 |
"from sklearn.metrics import (\n", |
|
|
42 |
" auc,\n", |
|
|
43 |
" roc_curve,\n", |
|
|
44 |
" ConfusionMatrixDisplay,\n", |
|
|
45 |
" f1_score,\n", |
|
|
46 |
" balanced_accuracy_score,\n", |
|
|
47 |
")\n", |
|
|
48 |
"from sklearn.preprocessing import StandardScaler, LabelBinarizer\n", |
|
|
49 |
"from sklearn.model_selection import train_test_split\n", |
|
|
50 |
"\n", |
|
|
51 |
"# ====== Qiskit imports ======\n", |
|
|
52 |
"\n", |
|
|
53 |
"from qiskit import QuantumCircuit\n", |
|
|
54 |
"from qiskit.circuit import Parameter\n", |
|
|
55 |
"from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap\n", |
|
|
56 |
"from qiskit_algorithms.optimizers import COBYLA, L_BFGS_B\n", |
|
|
57 |
"from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier, VQC\n", |
|
|
58 |
"from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN\n", |
|
|
59 |
"from qiskit_machine_learning.circuit.library import QNNCircuit\n", |
|
|
60 |
"from qiskit.circuit.library import ZZFeatureMap, ZFeatureMap, PauliFeatureMap\n", |
|
|
61 |
"from qiskit_aer import AerSimulator\n", |
|
|
62 |
"from qiskit_ibm_runtime import QiskitRuntimeService\n", |
|
|
63 |
"from qiskit_algorithms.utils import algorithm_globals\n", |
|
|
64 |
"from qiskit.primitives import Sampler\n", |
|
|
65 |
"from qiskit_ibm_runtime.fake_provider import FakeManilaV2\n", |
|
|
66 |
"from qiskit_algorithms.state_fidelities import ComputeUncompute\n", |
|
|
67 |
"from qiskit_machine_learning.kernels import FidelityQuantumKernel\n", |
|
|
68 |
"from qiskit_machine_learning.algorithms import QSVC, PegasosQSVC\n", |
|
|
69 |
"from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", |
|
|
70 |
"\n", |
|
|
71 |
"\n", |
|
|
72 |
"## ====== Torch imports ======\n", |
|
|
73 |
"import torch\n", |
|
|
74 |
"import torch.nn as nn \n", |
|
|
75 |
"import pytorch_lightning as pl \n", |
|
|
76 |
"from torchmetrics.classification import F1Score\n", |
|
|
77 |
"import torch.optim as optim\n", |
|
|
78 |
"from lightning.pytorch.utilities.types import OptimizerLRScheduler\n", |
|
|
79 |
"import torch.utils.data\n", |
|
|
80 |
"from pytorch_lightning.loggers import TensorBoardLogger\n", |
|
|
81 |
"import lightning, lightning.pytorch.loggers\n" |
|
|
82 |
] |
|
|
83 |
}, |
|
|
84 |
{ |
|
|
85 |
"cell_type": "code", |
|
|
86 |
"execution_count": 2, |
|
|
87 |
"metadata": {}, |
|
|
88 |
"outputs": [], |
|
|
89 |
"source": [ |
|
|
90 |
"# load checkpoint\n", |
|
|
91 |
"ckpt_path = '/dccstor/boseukb/Q/ML/checkpoints/GSE116237_forQ_iter'\n", |
|
|
92 |
"fname = os.path.basename(ckpt_path)\n", |
|
|
93 |
"all_checkpoints = []\n", |
|
|
94 |
"for fname in glob('/dccstor/boseukb/Q/ML/checkpoints/GSE116237_forQ_iter*/**/*.ckpt', recursive=True):\n", |
|
|
95 |
" all_checkpoints.append(fname)" |
|
|
96 |
] |
|
|
97 |
}, |
|
|
98 |
{ |
|
|
99 |
"cell_type": "code", |
|
|
100 |
"execution_count": 4, |
|
|
101 |
"metadata": {}, |
|
|
102 |
"outputs": [], |
|
|
103 |
"source": [ |
|
|
104 |
"def compute_svc(X_train, y_train, X_test, y_test, c = 1):\n", |
|
|
105 |
" svc = SVC(C=c)\n", |
|
|
106 |
" # y_train = torch.argmax(torch.tensor(y_train, dtype=torch.float32),dim=1)\n", |
|
|
107 |
" # y_test = torch.argmax(torch.tensor(y_test, dtype=torch.float32),dim=1)\n", |
|
|
108 |
" svc_vanilla = svc.fit(X_train, y_train)\n", |
|
|
109 |
" labels_vanilla = svc_vanilla.predict(X_test)\n", |
|
|
110 |
" f1_svc = f1_score(y_test, labels_vanilla, average='micro')\n", |
|
|
111 |
" \n", |
|
|
112 |
" return f1_svc\n", |
|
|
113 |
" \n", |
|
|
114 |
"def compute_QSVC(X_train, y_train, X_test, y_test, encoding='ZZ', c = 1, pegasos=False):\n", |
|
|
115 |
" \n", |
|
|
116 |
" #service = QiskitRuntimeService(instance=\"accelerated-disc/internal/default\") \n", |
|
|
117 |
" service = QiskitRuntimeService() \n", |
|
|
118 |
" backend = AerSimulator(method='statevector')\n", |
|
|
119 |
" algorithm_globals.random_seed = 12345\n", |
|
|
120 |
"\n", |
|
|
121 |
" feature_map = None\n", |
|
|
122 |
"\n", |
|
|
123 |
" if encoding == 'ZZ' :\n", |
|
|
124 |
" feature_map = ZZFeatureMap(feature_dimension=X_train.shape[1], \n", |
|
|
125 |
" reps=2, \n", |
|
|
126 |
" entanglement='linear')\n", |
|
|
127 |
" else: \n", |
|
|
128 |
" if encoding == 'Z': \n", |
|
|
129 |
" feature_map = ZFeatureMap(feature_dimension=X_train.shape[1], \n", |
|
|
130 |
" reps=2)\n", |
|
|
131 |
" if encoding == 'P': \n", |
|
|
132 |
" feature_map = PauliFeatureMap(feature_dimension=X_train.shape[1], \n", |
|
|
133 |
" reps=2, entanglement='linear')\n", |
|
|
134 |
"\n", |
|
|
135 |
" sampler = Sampler() \n", |
|
|
136 |
" fidelity = ComputeUncompute(sampler=sampler)\n", |
|
|
137 |
" Qkernel = FidelityQuantumKernel(fidelity=fidelity, feature_map=feature_map)\n", |
|
|
138 |
" f1_qsvc = QSVC(quantum_kernel=Qkernel, C=c)\n", |
|
|
139 |
" \n", |
|
|
140 |
" f1_peg_qsvc = 0\n", |
|
|
141 |
" if pegasos == True: \n", |
|
|
142 |
" peg_qsvc = PegasosQSVC(quantum_kernel=Qkernel, C=c)\n", |
|
|
143 |
" peg_qsvc_model = peg_qsvc.fit(X_train, y_train)\n", |
|
|
144 |
" labels_peg_qsvc = peg_qsvc_model.predict(X_test)\n", |
|
|
145 |
" f1_peg_qsvc = f1_score(y_test, labels_peg_qsvc, average='micro')\n", |
|
|
146 |
"\n", |
|
|
147 |
" return f1_qsvc,f1_peg_qsvc\n", |
|
|
148 |
"\n", |
|
|
149 |
"def compute_estimator_QNN(X_train, y_train, X_test, y_test, primitive: str):\n", |
|
|
150 |
" \n", |
|
|
151 |
" if primitive == 'estimator':\n", |
|
|
152 |
" # construct QNN with the QNNCircuit's default ZZFeatureMap feature map and RealAmplitudes ansatz.\n", |
|
|
153 |
" qc_qnn = QNNCircuit(num_qubits=X_train.shape[1])\n", |
|
|
154 |
"\n", |
|
|
155 |
" estimator_qnn = EstimatorQNN(circuit=qc_qnn)\n", |
|
|
156 |
" # QNN maps inputs to [-1, +1]\n", |
|
|
157 |
" estimator_qnn.forward(X_train[0, :], algorithm_globals.random.random(estimator_qnn.num_weights))\n", |
|
|
158 |
" # construct neural network classifier\n", |
|
|
159 |
" estimator_classifier = NeuralNetworkClassifier(estimator_qnn, optimizer=COBYLA(maxiter=100))\n", |
|
|
160 |
" # fit classifier to data\n", |
|
|
161 |
" estimator_classifier.fit(X_train, y_train)\n", |
|
|
162 |
" f1_score_estimator_qnn = estimator_classifier.score(X_test, y_test)\n", |
|
|
163 |
" return f1_score_estimator_qnn\n", |
|
|
164 |
" \n", |
|
|
165 |
" if primitive == 'sampler':\n", |
|
|
166 |
" # construct a quantum circuit from the default ZZFeatureMap feature map and a customized RealAmplitudes ansatz\n", |
|
|
167 |
" qc_sampler = QNNCircuit(ansatz=RealAmplitudes(X_train.shape[1], reps=1))\n", |
|
|
168 |
" # parity maps bitstrings to 0 or 1\n", |
|
|
169 |
" def parity(x):\n", |
|
|
170 |
" return \"{:b}\".format(x).count(\"1\") % 2\n", |
|
|
171 |
" output_shape = 2 # corresponds to the number of classes, possible outcomes of the (parity) mapping\n", |
|
|
172 |
" # construct QNN\n", |
|
|
173 |
" sampler_qnn = SamplerQNN(circuit=qc_sampler, interpret=parity,output_shape=output_shape,)\n", |
|
|
174 |
" # construct classifier\n", |
|
|
175 |
" sampler_classifier = NeuralNetworkClassifier(neural_network=sampler_qnn, optimizer=COBYLA(maxiter=100))\n", |
|
|
176 |
" # fit classifier to data\n", |
|
|
177 |
" sampler_classifier.fit(X_train, y_train)\n", |
|
|
178 |
" f1_score_sampler_qnn = sampler_classifier.score(X_test, y_test)\n", |
|
|
179 |
" return f1_score_sampler_qnn" |
|
|
180 |
] |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"execution_count": 15, |
|
|
185 |
"metadata": {}, |
|
|
186 |
"outputs": [ |
|
|
187 |
{ |
|
|
188 |
"name": "stdout", |
|
|
189 |
"output_type": "stream", |
|
|
190 |
"text": [ |
|
|
191 |
"0.01\n", |
|
|
192 |
"0.01\n" |
|
|
193 |
] |
|
|
194 |
} |
|
|
195 |
], |
|
|
196 |
"source": [ |
|
|
197 |
"results_dict = {}\n", |
|
|
198 |
"for iter in range(25):\n", |
|
|
199 |
" matches = [x for x in all_checkpoints if \"iter\"+str(iter)+\"_\" in x]\n", |
|
|
200 |
" #iter_num = os.path.basename(all_checkpoints[0]).split('_')[2]\\n\",\n", |
|
|
201 |
" x_train = np.load([x for x in matches if \"train_embedding\" in x][0])\n", |
|
|
202 |
" x_test = np.load([x for x in matches if \"test_embedding\" in x][0])\n", |
|
|
203 |
" y_train = np.load([x for x in matches if \"train_target\" in x][0])\n", |
|
|
204 |
" y_test = np.load([x for x in matches if \"test_target\" in x][0])\n", |
|
|
205 |
"\n", |
|
|
206 |
" f1_svc = compute_svc(x_train,\n", |
|
|
207 |
" y_train,\n", |
|
|
208 |
" x_test,\n", |
|
|
209 |
" y_test,\n", |
|
|
210 |
" c=10)\n", |
|
|
211 |
" \n", |
|
|
212 |
" f1_qsvc, f1_peg_qsvc = compute_QSVC(x_train, \n", |
|
|
213 |
" y_train, \n", |
|
|
214 |
" x_test,\n", |
|
|
215 |
" y_test,\n", |
|
|
216 |
" c=10,\n", |
|
|
217 |
" pegasos=1,\n", |
|
|
218 |
" )\n", |
|
|
219 |
" \n", |
|
|
220 |
" f1_qsvc= compute_QNN(x_train, \n", |
|
|
221 |
" y_train, \n", |
|
|
222 |
" x_test,\n", |
|
|
223 |
" y_test,\n", |
|
|
224 |
" c=10,\n", |
|
|
225 |
" pegasos=1,\n", |
|
|
226 |
" )\n", |
|
|
227 |
"results_dict[iter] = [f1_svc, f1_qsvc, f1_peg_qsvc]\n", |
|
|
228 |
"df = pd.DataFrame.from_dict(results_dict, orient='index')\n", |
|
|
229 |
"df.to_csv('/dccstor/boseukb/Q/ML/v2/results_comparison.csv', index=False, header=['SVC', 'QSVC', 'PEGQSVC'])" |
|
|
230 |
] |
|
|
231 |
} |
|
|
232 |
], |
|
|
233 |
"metadata": { |
|
|
234 |
"kernelspec": { |
|
|
235 |
"display_name": "Python 3", |
|
|
236 |
"language": "python", |
|
|
237 |
"name": "python3" |
|
|
238 |
}, |
|
|
239 |
"language_info": { |
|
|
240 |
"codemirror_mode": { |
|
|
241 |
"name": "ipython", |
|
|
242 |
"version": 3 |
|
|
243 |
}, |
|
|
244 |
"file_extension": ".py", |
|
|
245 |
"mimetype": "text/x-python", |
|
|
246 |
"name": "python", |
|
|
247 |
"nbconvert_exporter": "python", |
|
|
248 |
"pygments_lexer": "ipython3", |
|
|
249 |
"version": "3.12.3" |
|
|
250 |
} |
|
|
251 |
}, |
|
|
252 |
"nbformat": 4, |
|
|
253 |
"nbformat_minor": 2 |
|
|
254 |
} |