|
a |
|
b/SessionIII_MultiOmics/SingleCellML.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"## Single-cell RNA data on Minimal Residual disease for melanoma!\n", |
|
|
8 |
"" |
|
|
9 |
] |
|
|
10 |
}, |
|
|
11 |
{ |
|
|
12 |
"cell_type": "markdown", |
|
|
13 |
"metadata": {}, |
|
|
14 |
"source": [ |
|
|
15 |
"## Learning Outcome\n", |
|
|
16 |
"\n", |
|
|
17 |
"After this session you will be able to load and pre-process your multi-omics data to generate lower-dimensional embeddings. " |
|
|
18 |
] |
|
|
19 |
}, |
|
|
20 |
{ |
|
|
21 |
"cell_type": "markdown", |
|
|
22 |
"metadata": {}, |
|
|
23 |
"source": [ |
|
|
24 |
"### Quality Control\n", |
|
|
25 |
"" |
|
|
26 |
] |
|
|
27 |
}, |
|
|
28 |
{ |
|
|
29 |
"cell_type": "markdown", |
|
|
30 |
"metadata": {}, |
|
|
31 |
"source": [ |
|
|
32 |
"### Generate lower-dimensional embeddings\n", |
|
|
33 |
"\n", |
|
|
34 |
"We will perform dimensionality reduction and generate lower-dimensional embeddings of the single-cell RNAseq data using two methods:\n", |
|
|
35 |
"* PCA (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)\n", |
|
|
36 |
"* Neural Networks (https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html)\n" |
|
|
37 |
] |
|
|
38 |
}, |
|
|
39 |
{ |
|
|
40 |
"cell_type": "code", |
|
|
41 |
"execution_count": 2, |
|
|
42 |
"metadata": {}, |
|
|
43 |
"outputs": [], |
|
|
44 |
"source": [ |
|
|
45 |
"import numpy as np\n", |
|
|
46 |
"import pandas as pd\n", |
|
|
47 |
"import matplotlib\n", |
|
|
48 |
"import matplotlib.pyplot as plt\n", |
|
|
49 |
"import seaborn as sns \n", |
|
|
50 |
"sns.set_style('dark')\n", |
|
|
51 |
"\n", |
|
|
52 |
"# ====== Scikit-learn imports ======\n", |
|
|
53 |
"\n", |
|
|
54 |
"from sklearn.svm import SVC\n", |
|
|
55 |
"from sklearn.metrics import (\n", |
|
|
56 |
" auc,\n", |
|
|
57 |
" roc_curve,\n", |
|
|
58 |
" ConfusionMatrixDisplay,\n", |
|
|
59 |
" f1_score,\n", |
|
|
60 |
" balanced_accuracy_score,\n", |
|
|
61 |
")\n", |
|
|
62 |
"from sklearn.preprocessing import StandardScaler, LabelBinarizer\n", |
|
|
63 |
"from sklearn.model_selection import train_test_split\n", |
|
|
64 |
"from sklearn.decomposition import PCA\n", |
|
|
65 |
"\n", |
|
|
66 |
"## ====== Torch imports ======\n", |
|
|
67 |
"import torch\n", |
|
|
68 |
"import torch.nn as nn \n", |
|
|
69 |
"import torch.nn.functional as F\n", |
|
|
70 |
"import torch.optim as optim\n", |
|
|
71 |
"from lightning.pytorch.utilities.types import OptimizerLRScheduler\n", |
|
|
72 |
"import torch.utils.data\n", |
|
|
73 |
"from torch.utils.data import TensorDataset, DataLoader\n", |
|
|
74 |
"\n", |
|
|
75 |
"import lightning, lightning.pytorch.loggers" |
|
|
76 |
] |
|
|
77 |
}, |
|
|
78 |
{ |
|
|
79 |
"cell_type": "markdown", |
|
|
80 |
"metadata": {}, |
|
|
81 |
"source": [ |
|
|
82 |
"### Read data" |
|
|
83 |
] |
|
|
84 |
}, |
|
|
85 |
{ |
|
|
86 |
"cell_type": "code", |
|
|
87 |
"execution_count": 3, |
|
|
88 |
"metadata": {}, |
|
|
89 |
"outputs": [ |
|
|
90 |
{ |
|
|
91 |
"name": "stdout", |
|
|
92 |
"output_type": "stream", |
|
|
93 |
"text": [ |
|
|
94 |
"(369, 2002)\n" |
|
|
95 |
] |
|
|
96 |
}, |
|
|
97 |
{ |
|
|
98 |
"name": "stderr", |
|
|
99 |
"output_type": "stream", |
|
|
100 |
"text": [ |
|
|
101 |
"/tmp/ipykernel_3025929/715312502.py:7: SettingWithCopyWarning: \n", |
|
|
102 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", |
|
|
103 |
"Try using .loc[row_indexer,col_indexer] = value instead\n", |
|
|
104 |
"\n", |
|
|
105 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
|
|
106 |
" labels_filtered['Labels'] = [x.split(' ')[1] for x in labels_filtered['Labels']]\n" |
|
|
107 |
] |
|
|
108 |
} |
|
|
109 |
], |
|
|
110 |
"source": [ |
|
|
111 |
"df = pd.read_csv(\"../data/GSE116237_forQ.csv\")\n", |
|
|
112 |
"print(df.shape)\n", |
|
|
113 |
"labels = pd.read_csv(\"../data/GSE116237 filtered labels.csv\")\n", |
|
|
114 |
"labels.drop('Unnamed: 0', axis=1, inplace=True)\n", |
|
|
115 |
"labels.columns = ['Cells', 'Labels']\n", |
|
|
116 |
"labels_filtered = labels[labels['Cells'].isin(list(df['Cells']))]\n", |
|
|
117 |
"labels_filtered['Labels'] = [x.split(' ')[1] for x in labels_filtered['Labels']]\n", |
|
|
118 |
"df = pd.merge(df, labels_filtered, on='Cells', how='inner')\n", |
|
|
119 |
"df['Labels'] = df['Labels'].map({'T0': 0, 'phase2': 1})\n", |
|
|
120 |
"y = np.array(df['Labels'])\n", |
|
|
121 |
"X = df[df.columns[1:-1]].values\n", |
|
|
122 |
"\n", |
|
|
123 |
"num_samples = X.shape[0]\n", |
|
|
124 |
"num_feats = X.shape[1]" |
|
|
125 |
] |
|
|
126 |
}, |
|
|
127 |
{ |
|
|
128 |
"cell_type": "markdown", |
|
|
129 |
"metadata": {}, |
|
|
130 |
"source": [ |
|
|
131 |
"### Split into training and testing" |
|
|
132 |
] |
|
|
133 |
}, |
|
|
134 |
{ |
|
|
135 |
"cell_type": "code", |
|
|
136 |
"execution_count": 4, |
|
|
137 |
"metadata": {}, |
|
|
138 |
"outputs": [], |
|
|
139 |
"source": [ |
|
|
140 |
"X_working, X_held_out, y_working, y_held_out = train_test_split(X,\n", |
|
|
141 |
" y,\n", |
|
|
142 |
" train_size=0.8,\n", |
|
|
143 |
" shuffle=True)" |
|
|
144 |
] |
|
|
145 |
}, |
|
|
146 |
{ |
|
|
147 |
"cell_type": "markdown", |
|
|
148 |
"metadata": {}, |
|
|
149 |
"source": [ |
|
|
150 |
"### PCA" |
|
|
151 |
] |
|
|
152 |
}, |
|
|
153 |
{ |
|
|
154 |
"cell_type": "code", |
|
|
155 |
"execution_count": 5, |
|
|
156 |
"metadata": {}, |
|
|
157 |
"outputs": [ |
|
|
158 |
{ |
|
|
159 |
"name": "stdout", |
|
|
160 |
"output_type": "stream", |
|
|
161 |
"text": [ |
|
|
162 |
"Training data dimensions: (295, 2001)\n", |
|
|
163 |
"Embedded train dimensions: (295, 5)\n", |
|
|
164 |
"Testing data dimensions: (74, 2001)\n", |
|
|
165 |
"Embedded test dimensions: (74, 5)\n" |
|
|
166 |
] |
|
|
167 |
} |
|
|
168 |
], |
|
|
169 |
"source": [ |
|
|
170 |
"output_dim = 5\n", |
|
|
171 |
"pca = PCA(n_components=output_dim)\n", |
|
|
172 |
"scaler = StandardScaler()\n", |
|
|
173 |
"X_train_scaled = scaler.fit_transform(X_working)\n", |
|
|
174 |
"embedding_train = pca.fit_transform(X_train_scaled)\n", |
|
|
175 |
"X_test_scaled = scaler.fit_transform(X_held_out)\n", |
|
|
176 |
"embedding_test = pca.fit_transform(X_test_scaled)\n", |
|
|
177 |
"print(\"Training data dimensions: \", X_working.shape)\n", |
|
|
178 |
"print(\"Embedded train dimensions: \", embedding_train.shape)\n", |
|
|
179 |
"print(\"Testing data dimensions: \", X_held_out.shape)\n", |
|
|
180 |
"print(\"Embedded test dimensions: \", embedding_test.shape)" |
|
|
181 |
] |
|
|
182 |
}, |
|
|
183 |
{ |
|
|
184 |
"cell_type": "markdown", |
|
|
185 |
"metadata": {}, |
|
|
186 |
"source": [ |
|
|
187 |
"### Neural Networks" |
|
|
188 |
] |
|
|
189 |
}, |
|
|
190 |
{ |
|
|
191 |
"cell_type": "markdown", |
|
|
192 |
"metadata": {}, |
|
|
193 |
"source": [ |
|
|
194 |
"Define the network in Pytorch lightning" |
|
|
195 |
] |
|
|
196 |
}, |
|
|
197 |
{ |
|
|
198 |
"cell_type": "code", |
|
|
199 |
"execution_count": 6, |
|
|
200 |
"metadata": {}, |
|
|
201 |
"outputs": [], |
|
|
202 |
"source": [ |
|
|
203 |
"embedder = torch.nn.Sequential(\n", |
|
|
204 |
" nn.Linear(num_feats,256),\n", |
|
|
205 |
" nn.LeakyReLU(),\n", |
|
|
206 |
" nn.Linear(256,64),\n", |
|
|
207 |
" nn.LeakyReLU(),\n", |
|
|
208 |
" nn.Linear(64,32), \n", |
|
|
209 |
" nn.LeakyReLU(),\n", |
|
|
210 |
" nn.Linear(32,16), \n", |
|
|
211 |
" nn.LeakyReLU(),\n", |
|
|
212 |
" nn.Linear(16,output_dim),\n", |
|
|
213 |
" nn.LeakyReLU(), \n", |
|
|
214 |
" ) \n", |
|
|
215 |
"\n", |
|
|
216 |
"classifier = torch.nn.Sequential(\n", |
|
|
217 |
" nn.Linear(output_dim,1),\n", |
|
|
218 |
" nn.Softmax(dim=1)\n", |
|
|
219 |
" )\n", |
|
|
220 |
"class BinaryClassifierModel(lightning.LightningModule):\n", |
|
|
221 |
" def __init__(self, embedder, classifier, input_dim,learning_rate=1e-3):\n", |
|
|
222 |
" super().__init__()\n", |
|
|
223 |
" self.input_dim = input_dim\n", |
|
|
224 |
" self.embedder = embedder\n", |
|
|
225 |
" self.classifier = classifier\n", |
|
|
226 |
" self.learning_rate = learning_rate\n", |
|
|
227 |
" self.loss_fun = nn.BCELoss()\n", |
|
|
228 |
" \n", |
|
|
229 |
" def train_dataloader(self):\n", |
|
|
230 |
" return DataLoader(self.train_data, batch_size=32, shuffle=True)\n", |
|
|
231 |
"\n", |
|
|
232 |
" def val_dataloader(self):\n", |
|
|
233 |
" return DataLoader(self.val_data, batch_size=32) # No shuffling for validation\n", |
|
|
234 |
" \n", |
|
|
235 |
" def forward(self, X): \n", |
|
|
236 |
" x = self.embedder(X)\n", |
|
|
237 |
" x = self.classifier(x) \n", |
|
|
238 |
" return x \n", |
|
|
239 |
" \n", |
|
|
240 |
" def training_step(self, batch, batch_idx):\n", |
|
|
241 |
" x, y = batch\n", |
|
|
242 |
" y = y.unsqueeze(1)\n", |
|
|
243 |
" y_float = y.float()\n", |
|
|
244 |
" x_embedder = self.embedder(x)\n", |
|
|
245 |
" y_hat = self.classifier(x_embedder)\n", |
|
|
246 |
" #y_hat = torch.argmax(y_hat, dim=1)\n", |
|
|
247 |
" loss = self.loss_fun(y_hat, y_float)\n", |
|
|
248 |
" self.log(\"train_loss\", loss, \n", |
|
|
249 |
" prog_bar=True, \n", |
|
|
250 |
" logger=True)\n", |
|
|
251 |
" return loss\n", |
|
|
252 |
" \n", |
|
|
253 |
" def validation_step(self, batch, batch_idx):\n", |
|
|
254 |
" x, y = batch\n", |
|
|
255 |
" y = y.unsqueeze(1)\n", |
|
|
256 |
" y_float = y.float()\n", |
|
|
257 |
" x_embedder = self.embedder(x)\n", |
|
|
258 |
" y_hat = self.classifier(x_embedder)\n", |
|
|
259 |
" val_loss = self.loss_fun(y_hat, y_float)\n", |
|
|
260 |
" f1score = f1_score(y_hat, y)\n", |
|
|
261 |
" #print(f1score)\n", |
|
|
262 |
" #print(val_loss)\n", |
|
|
263 |
" self.log(\"val_loss\", val_loss, prog_bar=False, logger=True) # Log on epoch end\n", |
|
|
264 |
" return val_loss\n", |
|
|
265 |
"\n", |
|
|
266 |
" \n", |
|
|
267 |
" def configure_optimizers(self):\n", |
|
|
268 |
" return torch.optim.Adam(self.classifier.parameters(), lr=self.learning_rate)\n", |
|
|
269 |
" \n", |
|
|
270 |
"def prepare_data(X_train, y_train, X_val, y_val):\n", |
|
|
271 |
" # Assuming X and y are NumPy arrays\n", |
|
|
272 |
"\n", |
|
|
273 |
" train_data = TensorDataset(torch.tensor(X_train, dtype=torch.float32), \n", |
|
|
274 |
" torch.tensor(y_train, dtype=torch.float32))\n", |
|
|
275 |
" val_data = TensorDataset(torch.tensor(X_val, dtype=torch.float32), \n", |
|
|
276 |
" torch.tensor(y_val, dtype=torch.float32))\n", |
|
|
277 |
" \n", |
|
|
278 |
" return train_data, val_data " |
|
|
279 |
] |
|
|
280 |
}, |
|
|
281 |
{ |
|
|
282 |
"cell_type": "markdown", |
|
|
283 |
"metadata": {}, |
|
|
284 |
"source": [ |
|
|
285 |
"Compute the embeddings using the network and get lower dimension embeddings in the form of matrices for downstream QML tasks" |
|
|
286 |
] |
|
|
287 |
}, |
|
|
288 |
{ |
|
|
289 |
"cell_type": "code", |
|
|
290 |
"execution_count": 7, |
|
|
291 |
"metadata": {}, |
|
|
292 |
"outputs": [ |
|
|
293 |
{ |
|
|
294 |
"name": "stderr", |
|
|
295 |
"output_type": "stream", |
|
|
296 |
"text": [ |
|
|
297 |
"GPU available: False, used: False\n", |
|
|
298 |
"TPU available: False, using: 0 TPU cores\n", |
|
|
299 |
"HPU available: False, using: 0 HPUs\n", |
|
|
300 |
"2024-07-12 13:12:26.638257: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", |
|
|
301 |
"2024-07-12 13:12:26.651571: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:479] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", |
|
|
302 |
"2024-07-12 13:12:26.671424: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:10575] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", |
|
|
303 |
"2024-07-12 13:12:26.671449: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1442] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", |
|
|
304 |
"2024-07-12 13:12:26.684350: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", |
|
|
305 |
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
|
|
306 |
"2024-07-12 13:12:27.415951: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", |
|
|
307 |
"\n", |
|
|
308 |
" | Name | Type | Params | Mode \n", |
|
|
309 |
"--------------------------------------------------\n", |
|
|
310 |
"0 | embedder | Sequential | 531 K | train\n", |
|
|
311 |
"1 | classifier | Sequential | 6 | train\n", |
|
|
312 |
"2 | loss_fun | BCELoss | 0 | train\n", |
|
|
313 |
"--------------------------------------------------\n", |
|
|
314 |
"531 K Trainable params\n", |
|
|
315 |
"0 Non-trainable params\n", |
|
|
316 |
"531 K Total params\n", |
|
|
317 |
"2.127 Total estimated model params size (MB)\n" |
|
|
318 |
] |
|
|
319 |
}, |
|
|
320 |
{ |
|
|
321 |
"data": { |
|
|
322 |
"application/vnd.jupyter.widget-view+json": { |
|
|
323 |
"model_id": "afd281a3a6ac4be6ae161d27f15c8e56", |
|
|
324 |
"version_major": 2, |
|
|
325 |
"version_minor": 0 |
|
|
326 |
}, |
|
|
327 |
"text/plain": [ |
|
|
328 |
"Sanity Checking: | | 0/? [00:00<?, ?it/s]" |
|
|
329 |
] |
|
|
330 |
}, |
|
|
331 |
"metadata": {}, |
|
|
332 |
"output_type": "display_data" |
|
|
333 |
}, |
|
|
334 |
{ |
|
|
335 |
"name": "stderr", |
|
|
336 |
"output_type": "stream", |
|
|
337 |
"text": [ |
|
|
338 |
"/home/abose/QMLOmics/SessionIII_MultiOmics/.venv/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=191` in the `DataLoader` to improve performance.\n", |
|
|
339 |
"/home/abose/QMLOmics/SessionIII_MultiOmics/.venv/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=191` in the `DataLoader` to improve performance.\n", |
|
|
340 |
"/home/abose/QMLOmics/SessionIII_MultiOmics/.venv/lib/python3.10/site-packages/lightning/pytorch/loops/fit_loop.py:298: The number of training batches (9) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n" |
|
|
341 |
] |
|
|
342 |
}, |
|
|
343 |
{ |
|
|
344 |
"data": { |
|
|
345 |
"application/vnd.jupyter.widget-view+json": { |
|
|
346 |
"model_id": "2feb697f40ce4fe1a7d2f98f2e328f92", |
|
|
347 |
"version_major": 2, |
|
|
348 |
"version_minor": 0 |
|
|
349 |
}, |
|
|
350 |
"text/plain": [ |
|
|
351 |
"Training: | | 0/? [00:00<?, ?it/s]" |
|
|
352 |
] |
|
|
353 |
}, |
|
|
354 |
"metadata": {}, |
|
|
355 |
"output_type": "display_data" |
|
|
356 |
}, |
|
|
357 |
{ |
|
|
358 |
"data": { |
|
|
359 |
"application/vnd.jupyter.widget-view+json": { |
|
|
360 |
"model_id": "1866594d0bde4a43aa631377b0d8df6b", |
|
|
361 |
"version_major": 2, |
|
|
362 |
"version_minor": 0 |
|
|
363 |
}, |
|
|
364 |
"text/plain": [ |
|
|
365 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
366 |
] |
|
|
367 |
}, |
|
|
368 |
"metadata": {}, |
|
|
369 |
"output_type": "display_data" |
|
|
370 |
}, |
|
|
371 |
{ |
|
|
372 |
"data": { |
|
|
373 |
"application/vnd.jupyter.widget-view+json": { |
|
|
374 |
"model_id": "50fbcc83f53f442cbad46e38913a218b", |
|
|
375 |
"version_major": 2, |
|
|
376 |
"version_minor": 0 |
|
|
377 |
}, |
|
|
378 |
"text/plain": [ |
|
|
379 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
380 |
] |
|
|
381 |
}, |
|
|
382 |
"metadata": {}, |
|
|
383 |
"output_type": "display_data" |
|
|
384 |
}, |
|
|
385 |
{ |
|
|
386 |
"data": { |
|
|
387 |
"application/vnd.jupyter.widget-view+json": { |
|
|
388 |
"model_id": "41d8b1ed01d2431696fce99afae9dc71", |
|
|
389 |
"version_major": 2, |
|
|
390 |
"version_minor": 0 |
|
|
391 |
}, |
|
|
392 |
"text/plain": [ |
|
|
393 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
394 |
] |
|
|
395 |
}, |
|
|
396 |
"metadata": {}, |
|
|
397 |
"output_type": "display_data" |
|
|
398 |
}, |
|
|
399 |
{ |
|
|
400 |
"data": { |
|
|
401 |
"application/vnd.jupyter.widget-view+json": { |
|
|
402 |
"model_id": "902026fc5c1347b1b4f150d49313c067", |
|
|
403 |
"version_major": 2, |
|
|
404 |
"version_minor": 0 |
|
|
405 |
}, |
|
|
406 |
"text/plain": [ |
|
|
407 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
408 |
] |
|
|
409 |
}, |
|
|
410 |
"metadata": {}, |
|
|
411 |
"output_type": "display_data" |
|
|
412 |
}, |
|
|
413 |
{ |
|
|
414 |
"data": { |
|
|
415 |
"application/vnd.jupyter.widget-view+json": { |
|
|
416 |
"model_id": "26bfff9443aa4a2697c707c06b246e2a", |
|
|
417 |
"version_major": 2, |
|
|
418 |
"version_minor": 0 |
|
|
419 |
}, |
|
|
420 |
"text/plain": [ |
|
|
421 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
422 |
] |
|
|
423 |
}, |
|
|
424 |
"metadata": {}, |
|
|
425 |
"output_type": "display_data" |
|
|
426 |
}, |
|
|
427 |
{ |
|
|
428 |
"data": { |
|
|
429 |
"application/vnd.jupyter.widget-view+json": { |
|
|
430 |
"model_id": "eaa3399fcdf147bf84b357300828c816", |
|
|
431 |
"version_major": 2, |
|
|
432 |
"version_minor": 0 |
|
|
433 |
}, |
|
|
434 |
"text/plain": [ |
|
|
435 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
436 |
] |
|
|
437 |
}, |
|
|
438 |
"metadata": {}, |
|
|
439 |
"output_type": "display_data" |
|
|
440 |
}, |
|
|
441 |
{ |
|
|
442 |
"data": { |
|
|
443 |
"application/vnd.jupyter.widget-view+json": { |
|
|
444 |
"model_id": "1fbaed0d8f4f4575ad03ad4dd78fcd9e", |
|
|
445 |
"version_major": 2, |
|
|
446 |
"version_minor": 0 |
|
|
447 |
}, |
|
|
448 |
"text/plain": [ |
|
|
449 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
450 |
] |
|
|
451 |
}, |
|
|
452 |
"metadata": {}, |
|
|
453 |
"output_type": "display_data" |
|
|
454 |
}, |
|
|
455 |
{ |
|
|
456 |
"data": { |
|
|
457 |
"application/vnd.jupyter.widget-view+json": { |
|
|
458 |
"model_id": "1d38ac2789784e20a612a71e38fda98f", |
|
|
459 |
"version_major": 2, |
|
|
460 |
"version_minor": 0 |
|
|
461 |
}, |
|
|
462 |
"text/plain": [ |
|
|
463 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
464 |
] |
|
|
465 |
}, |
|
|
466 |
"metadata": {}, |
|
|
467 |
"output_type": "display_data" |
|
|
468 |
}, |
|
|
469 |
{ |
|
|
470 |
"data": { |
|
|
471 |
"application/vnd.jupyter.widget-view+json": { |
|
|
472 |
"model_id": "3ed88b70b68e4421b9be0774799d7a11", |
|
|
473 |
"version_major": 2, |
|
|
474 |
"version_minor": 0 |
|
|
475 |
}, |
|
|
476 |
"text/plain": [ |
|
|
477 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
478 |
] |
|
|
479 |
}, |
|
|
480 |
"metadata": {}, |
|
|
481 |
"output_type": "display_data" |
|
|
482 |
}, |
|
|
483 |
{ |
|
|
484 |
"data": { |
|
|
485 |
"application/vnd.jupyter.widget-view+json": { |
|
|
486 |
"model_id": "410e31b0fc8b4947b617d00d181ed5fe", |
|
|
487 |
"version_major": 2, |
|
|
488 |
"version_minor": 0 |
|
|
489 |
}, |
|
|
490 |
"text/plain": [ |
|
|
491 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
492 |
] |
|
|
493 |
}, |
|
|
494 |
"metadata": {}, |
|
|
495 |
"output_type": "display_data" |
|
|
496 |
}, |
|
|
497 |
{ |
|
|
498 |
"data": { |
|
|
499 |
"application/vnd.jupyter.widget-view+json": { |
|
|
500 |
"model_id": "3c809906d16c4181adbf366e46774a23", |
|
|
501 |
"version_major": 2, |
|
|
502 |
"version_minor": 0 |
|
|
503 |
}, |
|
|
504 |
"text/plain": [ |
|
|
505 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
506 |
] |
|
|
507 |
}, |
|
|
508 |
"metadata": {}, |
|
|
509 |
"output_type": "display_data" |
|
|
510 |
}, |
|
|
511 |
{ |
|
|
512 |
"data": { |
|
|
513 |
"application/vnd.jupyter.widget-view+json": { |
|
|
514 |
"model_id": "9a2c0a33fb524a599cb094dc3a690484", |
|
|
515 |
"version_major": 2, |
|
|
516 |
"version_minor": 0 |
|
|
517 |
}, |
|
|
518 |
"text/plain": [ |
|
|
519 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
520 |
] |
|
|
521 |
}, |
|
|
522 |
"metadata": {}, |
|
|
523 |
"output_type": "display_data" |
|
|
524 |
}, |
|
|
525 |
{ |
|
|
526 |
"data": { |
|
|
527 |
"application/vnd.jupyter.widget-view+json": { |
|
|
528 |
"model_id": "0cb0d96880a64b4d94c86ab36f4029cd", |
|
|
529 |
"version_major": 2, |
|
|
530 |
"version_minor": 0 |
|
|
531 |
}, |
|
|
532 |
"text/plain": [ |
|
|
533 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
534 |
] |
|
|
535 |
}, |
|
|
536 |
"metadata": {}, |
|
|
537 |
"output_type": "display_data" |
|
|
538 |
}, |
|
|
539 |
{ |
|
|
540 |
"data": { |
|
|
541 |
"application/vnd.jupyter.widget-view+json": { |
|
|
542 |
"model_id": "ae97bce46fbe4f128928d3d06ce481b0", |
|
|
543 |
"version_major": 2, |
|
|
544 |
"version_minor": 0 |
|
|
545 |
}, |
|
|
546 |
"text/plain": [ |
|
|
547 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
548 |
] |
|
|
549 |
}, |
|
|
550 |
"metadata": {}, |
|
|
551 |
"output_type": "display_data" |
|
|
552 |
}, |
|
|
553 |
{ |
|
|
554 |
"data": { |
|
|
555 |
"application/vnd.jupyter.widget-view+json": { |
|
|
556 |
"model_id": "b35824fd78e843dd9cd332a139636f4c", |
|
|
557 |
"version_major": 2, |
|
|
558 |
"version_minor": 0 |
|
|
559 |
}, |
|
|
560 |
"text/plain": [ |
|
|
561 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
562 |
] |
|
|
563 |
}, |
|
|
564 |
"metadata": {}, |
|
|
565 |
"output_type": "display_data" |
|
|
566 |
}, |
|
|
567 |
{ |
|
|
568 |
"data": { |
|
|
569 |
"application/vnd.jupyter.widget-view+json": { |
|
|
570 |
"model_id": "5da6734d8a90481a9463bfce99e5f786", |
|
|
571 |
"version_major": 2, |
|
|
572 |
"version_minor": 0 |
|
|
573 |
}, |
|
|
574 |
"text/plain": [ |
|
|
575 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
576 |
] |
|
|
577 |
}, |
|
|
578 |
"metadata": {}, |
|
|
579 |
"output_type": "display_data" |
|
|
580 |
}, |
|
|
581 |
{ |
|
|
582 |
"data": { |
|
|
583 |
"application/vnd.jupyter.widget-view+json": { |
|
|
584 |
"model_id": "6b36092d92594a59967e21f0ff258005", |
|
|
585 |
"version_major": 2, |
|
|
586 |
"version_minor": 0 |
|
|
587 |
}, |
|
|
588 |
"text/plain": [ |
|
|
589 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
590 |
] |
|
|
591 |
}, |
|
|
592 |
"metadata": {}, |
|
|
593 |
"output_type": "display_data" |
|
|
594 |
}, |
|
|
595 |
{ |
|
|
596 |
"data": { |
|
|
597 |
"application/vnd.jupyter.widget-view+json": { |
|
|
598 |
"model_id": "e9f9bd47d5d64909916996ee563c55ce", |
|
|
599 |
"version_major": 2, |
|
|
600 |
"version_minor": 0 |
|
|
601 |
}, |
|
|
602 |
"text/plain": [ |
|
|
603 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
604 |
] |
|
|
605 |
}, |
|
|
606 |
"metadata": {}, |
|
|
607 |
"output_type": "display_data" |
|
|
608 |
}, |
|
|
609 |
{ |
|
|
610 |
"data": { |
|
|
611 |
"application/vnd.jupyter.widget-view+json": { |
|
|
612 |
"model_id": "a309af8ebdb043f686d7fca5002b7fc5", |
|
|
613 |
"version_major": 2, |
|
|
614 |
"version_minor": 0 |
|
|
615 |
}, |
|
|
616 |
"text/plain": [ |
|
|
617 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
618 |
] |
|
|
619 |
}, |
|
|
620 |
"metadata": {}, |
|
|
621 |
"output_type": "display_data" |
|
|
622 |
}, |
|
|
623 |
{ |
|
|
624 |
"data": { |
|
|
625 |
"application/vnd.jupyter.widget-view+json": { |
|
|
626 |
"model_id": "5916500305484ddba658d94c139f0ce2", |
|
|
627 |
"version_major": 2, |
|
|
628 |
"version_minor": 0 |
|
|
629 |
}, |
|
|
630 |
"text/plain": [ |
|
|
631 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
632 |
] |
|
|
633 |
}, |
|
|
634 |
"metadata": {}, |
|
|
635 |
"output_type": "display_data" |
|
|
636 |
}, |
|
|
637 |
{ |
|
|
638 |
"data": { |
|
|
639 |
"application/vnd.jupyter.widget-view+json": { |
|
|
640 |
"model_id": "29397c5350bd4fcca1e3e6ec15289f16", |
|
|
641 |
"version_major": 2, |
|
|
642 |
"version_minor": 0 |
|
|
643 |
}, |
|
|
644 |
"text/plain": [ |
|
|
645 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
646 |
] |
|
|
647 |
}, |
|
|
648 |
"metadata": {}, |
|
|
649 |
"output_type": "display_data" |
|
|
650 |
}, |
|
|
651 |
{ |
|
|
652 |
"data": { |
|
|
653 |
"application/vnd.jupyter.widget-view+json": { |
|
|
654 |
"model_id": "0b973052d23d4633b7ad8c857ecab896", |
|
|
655 |
"version_major": 2, |
|
|
656 |
"version_minor": 0 |
|
|
657 |
}, |
|
|
658 |
"text/plain": [ |
|
|
659 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
660 |
] |
|
|
661 |
}, |
|
|
662 |
"metadata": {}, |
|
|
663 |
"output_type": "display_data" |
|
|
664 |
}, |
|
|
665 |
{ |
|
|
666 |
"data": { |
|
|
667 |
"application/vnd.jupyter.widget-view+json": { |
|
|
668 |
"model_id": "800621fcc3d447c9bb9aae4612469fe3", |
|
|
669 |
"version_major": 2, |
|
|
670 |
"version_minor": 0 |
|
|
671 |
}, |
|
|
672 |
"text/plain": [ |
|
|
673 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
674 |
] |
|
|
675 |
}, |
|
|
676 |
"metadata": {}, |
|
|
677 |
"output_type": "display_data" |
|
|
678 |
}, |
|
|
679 |
{ |
|
|
680 |
"data": { |
|
|
681 |
"application/vnd.jupyter.widget-view+json": { |
|
|
682 |
"model_id": "589ab988ed3a4a9191e91ceeffd95bbb", |
|
|
683 |
"version_major": 2, |
|
|
684 |
"version_minor": 0 |
|
|
685 |
}, |
|
|
686 |
"text/plain": [ |
|
|
687 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
688 |
] |
|
|
689 |
}, |
|
|
690 |
"metadata": {}, |
|
|
691 |
"output_type": "display_data" |
|
|
692 |
}, |
|
|
693 |
{ |
|
|
694 |
"data": { |
|
|
695 |
"application/vnd.jupyter.widget-view+json": { |
|
|
696 |
"model_id": "8ab7fdd5b30a4d78a61037b76843c883", |
|
|
697 |
"version_major": 2, |
|
|
698 |
"version_minor": 0 |
|
|
699 |
}, |
|
|
700 |
"text/plain": [ |
|
|
701 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
702 |
] |
|
|
703 |
}, |
|
|
704 |
"metadata": {}, |
|
|
705 |
"output_type": "display_data" |
|
|
706 |
}, |
|
|
707 |
{ |
|
|
708 |
"data": { |
|
|
709 |
"application/vnd.jupyter.widget-view+json": { |
|
|
710 |
"model_id": "6953b322b6bb48989d80fcd563914d96", |
|
|
711 |
"version_major": 2, |
|
|
712 |
"version_minor": 0 |
|
|
713 |
}, |
|
|
714 |
"text/plain": [ |
|
|
715 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
716 |
] |
|
|
717 |
}, |
|
|
718 |
"metadata": {}, |
|
|
719 |
"output_type": "display_data" |
|
|
720 |
}, |
|
|
721 |
{ |
|
|
722 |
"data": { |
|
|
723 |
"application/vnd.jupyter.widget-view+json": { |
|
|
724 |
"model_id": "b9695946233d4e1d9f67e68bf459b2a4", |
|
|
725 |
"version_major": 2, |
|
|
726 |
"version_minor": 0 |
|
|
727 |
}, |
|
|
728 |
"text/plain": [ |
|
|
729 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
730 |
] |
|
|
731 |
}, |
|
|
732 |
"metadata": {}, |
|
|
733 |
"output_type": "display_data" |
|
|
734 |
}, |
|
|
735 |
{ |
|
|
736 |
"data": { |
|
|
737 |
"application/vnd.jupyter.widget-view+json": { |
|
|
738 |
"model_id": "667a451df9eb49ceaece4de0780fca12", |
|
|
739 |
"version_major": 2, |
|
|
740 |
"version_minor": 0 |
|
|
741 |
}, |
|
|
742 |
"text/plain": [ |
|
|
743 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
744 |
] |
|
|
745 |
}, |
|
|
746 |
"metadata": {}, |
|
|
747 |
"output_type": "display_data" |
|
|
748 |
}, |
|
|
749 |
{ |
|
|
750 |
"data": { |
|
|
751 |
"application/vnd.jupyter.widget-view+json": { |
|
|
752 |
"model_id": "a938f5b709934ed6a3c46843276d9d19", |
|
|
753 |
"version_major": 2, |
|
|
754 |
"version_minor": 0 |
|
|
755 |
}, |
|
|
756 |
"text/plain": [ |
|
|
757 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
758 |
] |
|
|
759 |
}, |
|
|
760 |
"metadata": {}, |
|
|
761 |
"output_type": "display_data" |
|
|
762 |
}, |
|
|
763 |
{ |
|
|
764 |
"data": { |
|
|
765 |
"application/vnd.jupyter.widget-view+json": { |
|
|
766 |
"model_id": "21272ee9f2934f699b97b3cc84f90eef", |
|
|
767 |
"version_major": 2, |
|
|
768 |
"version_minor": 0 |
|
|
769 |
}, |
|
|
770 |
"text/plain": [ |
|
|
771 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
772 |
] |
|
|
773 |
}, |
|
|
774 |
"metadata": {}, |
|
|
775 |
"output_type": "display_data" |
|
|
776 |
}, |
|
|
777 |
{ |
|
|
778 |
"data": { |
|
|
779 |
"application/vnd.jupyter.widget-view+json": { |
|
|
780 |
"model_id": "949bd80e3bb9469e8496eb333c4efa79", |
|
|
781 |
"version_major": 2, |
|
|
782 |
"version_minor": 0 |
|
|
783 |
}, |
|
|
784 |
"text/plain": [ |
|
|
785 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
786 |
] |
|
|
787 |
}, |
|
|
788 |
"metadata": {}, |
|
|
789 |
"output_type": "display_data" |
|
|
790 |
}, |
|
|
791 |
{ |
|
|
792 |
"data": { |
|
|
793 |
"application/vnd.jupyter.widget-view+json": { |
|
|
794 |
"model_id": "8f06b68975cb4cdea69328626b62d0ce", |
|
|
795 |
"version_major": 2, |
|
|
796 |
"version_minor": 0 |
|
|
797 |
}, |
|
|
798 |
"text/plain": [ |
|
|
799 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
800 |
] |
|
|
801 |
}, |
|
|
802 |
"metadata": {}, |
|
|
803 |
"output_type": "display_data" |
|
|
804 |
}, |
|
|
805 |
{ |
|
|
806 |
"data": { |
|
|
807 |
"application/vnd.jupyter.widget-view+json": { |
|
|
808 |
"model_id": "2d4486c1d5094d419cea9b4249ee67ba", |
|
|
809 |
"version_major": 2, |
|
|
810 |
"version_minor": 0 |
|
|
811 |
}, |
|
|
812 |
"text/plain": [ |
|
|
813 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
814 |
] |
|
|
815 |
}, |
|
|
816 |
"metadata": {}, |
|
|
817 |
"output_type": "display_data" |
|
|
818 |
}, |
|
|
819 |
{ |
|
|
820 |
"data": { |
|
|
821 |
"application/vnd.jupyter.widget-view+json": { |
|
|
822 |
"model_id": "43f06e9af03549d48c56074332d1b0ce", |
|
|
823 |
"version_major": 2, |
|
|
824 |
"version_minor": 0 |
|
|
825 |
}, |
|
|
826 |
"text/plain": [ |
|
|
827 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
828 |
] |
|
|
829 |
}, |
|
|
830 |
"metadata": {}, |
|
|
831 |
"output_type": "display_data" |
|
|
832 |
}, |
|
|
833 |
{ |
|
|
834 |
"data": { |
|
|
835 |
"application/vnd.jupyter.widget-view+json": { |
|
|
836 |
"model_id": "4680640dc1904e7d87c1d02cb817b8bf", |
|
|
837 |
"version_major": 2, |
|
|
838 |
"version_minor": 0 |
|
|
839 |
}, |
|
|
840 |
"text/plain": [ |
|
|
841 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
842 |
] |
|
|
843 |
}, |
|
|
844 |
"metadata": {}, |
|
|
845 |
"output_type": "display_data" |
|
|
846 |
}, |
|
|
847 |
{ |
|
|
848 |
"data": { |
|
|
849 |
"application/vnd.jupyter.widget-view+json": { |
|
|
850 |
"model_id": "92ef38a4c8314805a3c27ed94929b46f", |
|
|
851 |
"version_major": 2, |
|
|
852 |
"version_minor": 0 |
|
|
853 |
}, |
|
|
854 |
"text/plain": [ |
|
|
855 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
856 |
] |
|
|
857 |
}, |
|
|
858 |
"metadata": {}, |
|
|
859 |
"output_type": "display_data" |
|
|
860 |
}, |
|
|
861 |
{ |
|
|
862 |
"data": { |
|
|
863 |
"application/vnd.jupyter.widget-view+json": { |
|
|
864 |
"model_id": "5b65eb5da1ad451fb01235fc22d83478", |
|
|
865 |
"version_major": 2, |
|
|
866 |
"version_minor": 0 |
|
|
867 |
}, |
|
|
868 |
"text/plain": [ |
|
|
869 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
870 |
] |
|
|
871 |
}, |
|
|
872 |
"metadata": {}, |
|
|
873 |
"output_type": "display_data" |
|
|
874 |
}, |
|
|
875 |
{ |
|
|
876 |
"data": { |
|
|
877 |
"application/vnd.jupyter.widget-view+json": { |
|
|
878 |
"model_id": "46cf08a04d00430cb780c555189c56aa", |
|
|
879 |
"version_major": 2, |
|
|
880 |
"version_minor": 0 |
|
|
881 |
}, |
|
|
882 |
"text/plain": [ |
|
|
883 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
884 |
] |
|
|
885 |
}, |
|
|
886 |
"metadata": {}, |
|
|
887 |
"output_type": "display_data" |
|
|
888 |
}, |
|
|
889 |
{ |
|
|
890 |
"data": { |
|
|
891 |
"application/vnd.jupyter.widget-view+json": { |
|
|
892 |
"model_id": "19dc01567a744838a98b2ae6ea833c11", |
|
|
893 |
"version_major": 2, |
|
|
894 |
"version_minor": 0 |
|
|
895 |
}, |
|
|
896 |
"text/plain": [ |
|
|
897 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
898 |
] |
|
|
899 |
}, |
|
|
900 |
"metadata": {}, |
|
|
901 |
"output_type": "display_data" |
|
|
902 |
}, |
|
|
903 |
{ |
|
|
904 |
"data": { |
|
|
905 |
"application/vnd.jupyter.widget-view+json": { |
|
|
906 |
"model_id": "d4e9d6f7d8214b47ad0beb604847d952", |
|
|
907 |
"version_major": 2, |
|
|
908 |
"version_minor": 0 |
|
|
909 |
}, |
|
|
910 |
"text/plain": [ |
|
|
911 |
"Validation: | | 0/? [00:00<?, ?it/s]" |
|
|
912 |
] |
|
|
913 |
}, |
|
|
914 |
"metadata": {}, |
|
|
915 |
"output_type": "display_data" |
|
|
916 |
}, |
|
|
917 |
{ |
|
|
918 |
"name": "stderr", |
|
|
919 |
"output_type": "stream", |
|
|
920 |
"text": [ |
|
|
921 |
"`Trainer.fit` stopped: `max_epochs=40` reached.\n" |
|
|
922 |
] |
|
|
923 |
} |
|
|
924 |
], |
|
|
925 |
"source": [ |
|
|
926 |
"f1s = []\n", |
|
|
927 |
"embeddings_train = []\n", |
|
|
928 |
"embeddings_test = []\n", |
|
|
929 |
"train_labels = []\n", |
|
|
930 |
"test_labels = [] \n", |
|
|
931 |
"\n", |
|
|
932 |
"num_iter = 1\n", |
|
|
933 |
"for i in range(num_iter): \n", |
|
|
934 |
"\n", |
|
|
935 |
" X_train, X_test, y_train, y_test = train_test_split(X_working,\n", |
|
|
936 |
" y_working,\n", |
|
|
937 |
" train_size=0.9,\n", |
|
|
938 |
" shuffle=True)\n", |
|
|
939 |
"\n", |
|
|
940 |
" num_epochs = 40\n", |
|
|
941 |
" model = BinaryClassifierModel(embedder, classifier, input_dim=num_feats)\n", |
|
|
942 |
" model.train_data, model.val_data = prepare_data(X_train, y_train, X_test, y_test) # Prepare data for training\n", |
|
|
943 |
" logger = lightning.pytorch.loggers.TensorBoardLogger(save_dir=\".\",name=\"original_classifier\")\n", |
|
|
944 |
" # Train the model\n", |
|
|
945 |
" trainer = lightning.Trainer(max_epochs=num_epochs, \n", |
|
|
946 |
" logger=logger) # Adjust progress bar refresh rate as needed\n", |
|
|
947 |
" trainer.fit(model)\n", |
|
|
948 |
" model.eval()\n", |
|
|
949 |
" embedded_test = model.embedder(torch.tensor(X_test, dtype=torch.float32))\n", |
|
|
950 |
" y_pred = model.classifier(embedded_test)\n", |
|
|
951 |
" y_pred_proba = y_pred.detach().cpu().numpy()\n", |
|
|
952 |
" y_pred_class = np.round(y_pred_proba)\n", |
|
|
953 |
"\n", |
|
|
954 |
" f1 = f1_score(y_test, y_pred_class)\n", |
|
|
955 |
" f1s.append(f1)\n", |
|
|
956 |
" \n", |
|
|
957 |
" embedded_train = model.embedder(torch.tensor(X_train, dtype=torch.float32)).detach().numpy()\n", |
|
|
958 |
" embeddings_train.append(embedded_train)\n", |
|
|
959 |
" embeddings_test.append(embedded_test.detach().numpy())\n", |
|
|
960 |
" train_labels.append(y_train)\n", |
|
|
961 |
" test_labels.append(y_test)" |
|
|
962 |
] |
|
|
963 |
}, |
|
|
964 |
{ |
|
|
965 |
"cell_type": "markdown", |
|
|
966 |
"metadata": {}, |
|
|
967 |
"source": [ |
|
|
968 |
"### Save the embeddings" |
|
|
969 |
] |
|
|
970 |
}, |
|
|
971 |
{ |
|
|
972 |
"cell_type": "code", |
|
|
973 |
"execution_count": 11, |
|
|
974 |
"metadata": {}, |
|
|
975 |
"outputs": [], |
|
|
976 |
"source": [ |
|
|
977 |
"fname = \"MRD\"\n", |
|
|
978 |
"\n", |
|
|
979 |
"for i,x in enumerate(embeddings_train): \n", |
|
|
980 |
" fname_train = fname + \"_iter\" + str(i) + \"_train_embedding\"\n", |
|
|
981 |
" np.save(f\"checkpoints/{fname}/{fname_train}\", x)\n", |
|
|
982 |
"\n", |
|
|
983 |
"for i,x in enumerate(train_labels): \n", |
|
|
984 |
" fname_train_y = fname + \"_iter\" + str(i) + \"_train_labels\"\n", |
|
|
985 |
" np.save(f\"checkpoints/{fname}/{fname_train_y}\", x)\n", |
|
|
986 |
"\n", |
|
|
987 |
"for i,x in enumerate(embeddings_test): \n", |
|
|
988 |
" fname_test = fname + \"_iter\" + str(i) + \"_test_embedding\"\n", |
|
|
989 |
" np.save(f\"checkpoints/{fname}/{fname_test}\", x)\n", |
|
|
990 |
" \n", |
|
|
991 |
"for i,x in enumerate(test_labels): \n", |
|
|
992 |
" fname_test_y = fname + \"_iter\" + str(i) + \"_test_labels\"\n", |
|
|
993 |
" np.save(f\"checkpoints/{fname}/{fname_test_y}\", x)\n" |
|
|
994 |
] |
|
|
995 |
} |
|
|
996 |
], |
|
|
997 |
"metadata": { |
|
|
998 |
"kernelspec": { |
|
|
999 |
"display_name": "Python 3", |
|
|
1000 |
"language": "python", |
|
|
1001 |
"name": "python3" |
|
|
1002 |
}, |
|
|
1003 |
"language_info": { |
|
|
1004 |
"codemirror_mode": { |
|
|
1005 |
"name": "ipython", |
|
|
1006 |
"version": 3 |
|
|
1007 |
}, |
|
|
1008 |
"file_extension": ".py", |
|
|
1009 |
"mimetype": "text/x-python", |
|
|
1010 |
"name": "python", |
|
|
1011 |
"nbconvert_exporter": "python", |
|
|
1012 |
"pygments_lexer": "ipython3", |
|
|
1013 |
"version": "3.10.12" |
|
|
1014 |
} |
|
|
1015 |
}, |
|
|
1016 |
"nbformat": 4, |
|
|
1017 |
"nbformat_minor": 2 |
|
|
1018 |
} |