[f123c6]: / reports / vae / files / 20231122_092648_losses.csv

Download this file

# total reconstruction kl contrastive mse_proteomics mse_metabolomics mse_drugresponse mse_crisprcas9 mse_methylation mse_transcriptomics mse_copynumber cv epoch type lr
1 8.499543190002441 8.37756061553955 0.003202373394742608 0.11877983808517456 1.092037558555603 1.0219731330871582 1.086742639541626 1.078605055809021 0.9889670610427856 1.0543469190597534 2.0548882484436035 1 1 train 0.0003
2 8.489906311035156 8.383111000061035 0.003081238130107522 0.10371434688568115 1.0508077144622803 1.064449429512024 1.0740615129470825 1.0990002155303955 1.1016279458999634 1.0450252294540405 1.9481394290924072 1 1 train 0.0003
3 8.342692375183105 8.235456466674805 0.002807940123602748 0.1044287383556366 1.0407679080963135 1.0900410413742065 1.0483773946762085 1.0266538858413696 1.0179595947265625 1.0410809516906738 1.9705759286880493 1 1 train 0.0003
4 7.886024475097656 7.769508361816406 0.010210457257926464 0.10630571842193604 1.0090261697769165 1.02211594581604 0.9951415061950684 1.0804792642593384 1.0303435325622559 1.0043835639953613 1.6280183792114258 1 1 val 0.0003
5 8.220915794372559 8.09974479675293 0.008908217772841454 0.11226285994052887 1.084617257118225 1.069523811340332 1.094473958015442 1.0492573976516724 1.0765255689620972 1.0816271305084229 1.6437193155288696 1 2 train 0.0003
6 7.765083312988281 7.646949291229248 0.008936373516917229 0.10919776558876038 1.0289052724838257 1.0507551431655884 1.0120707750320435 1.0715737342834473 0.9194008111953735 0.9434670805931091 1.6207767724990845 1 2 train 0.0003
7 7.611970901489258 7.492291450500488 0.010834075510501862 0.10884543508291245 0.9573211073875427 0.9876830577850342 1.0408836603164673 1.072874665260315 0.8783408999443054 0.9561626315116882 1.5990259647369385 1 2 train 0.0003
8 7.269278526306152 7.130985736846924 0.007863749749958515 0.13042916357517242 0.9175525903701782 0.9942355155944824 0.9555193185806274 1.0323057174682617 0.7614223957061768 0.8626000881195068 1.6073497533798218 1 2 val 0.0003
9 7.33445930480957 7.201751708984375 0.008196947164833546 0.12451063096523285 0.9437441825866699 0.990433931350708 1.0531799793243408 1.0516666173934937 0.7850506901741028 0.8822852969169617 1.4953911304473877 1 3 train 0.0003
10 7.202350616455078 7.0517258644104 0.008000251837074757 0.14262446761131287 0.9348497986793518 0.9870335459709167 1.0507323741912842 0.9558592438697815 0.7717601656913757 0.8602713942527771 1.4912196397781372 1 3 train 0.0003
11 7.016556262969971 6.868557929992676 0.010089896619319916 0.13790850341320038 0.8690169453620911 1.01949942111969 0.9538223147392273 1.0335626602172852 0.7322825789451599 0.8605825901031494 1.3997914791107178 1 3 train 0.0003
12 6.858187198638916 6.7260823249816895 0.009419112466275692 0.12268570810556412 0.8576087355613708 0.9873611330986023 0.9369734525680542 1.0279407501220703 0.720076858997345 0.817111611366272 1.3790098428726196 1 3 val 0.0003
13 7.359402179718018 7.2302398681640625 0.004387453198432922 0.12477482855319977 0.8757124543190002 1.0433021783828735 0.9685181975364685 0.9993541240692139 0.7348172664642334 0.9352424740791321 1.673292875289917 1 4 train 0.0003
14 7.385500431060791 7.2722368240356445 0.008302413858473301 0.10496137291193008 0.9978060722351074 1.0425469875335693 1.0054774284362793 1.0445692539215088 1.0158367156982422 0.8641979098320007 1.3018028736114502 1 4 train 0.0003
15 7.048996925354004 6.913022041320801 0.01872994564473629 0.11724480241537094 0.9496678113937378 0.9736731052398682 1.0039418935775757 0.995440661907196 0.8592957258224487 0.8989030122756958 1.2320998907089233 1 4 train 0.0003
16 6.6602020263671875 6.541853427886963 0.012135281227529049 0.1062130555510521 0.8325682282447815 0.9804967045783997 0.9093656539916992 1.0215061902999878 0.7088503837585449 0.8218986988067627 1.267167568206787 1 4 val 0.0003
17 6.995444297790527 6.87879753112793 0.005762141197919846 0.11088460683822632 0.8511747717857361 1.0287437438964844 0.9844444990158081 0.9757865071296692 0.6733265519142151 0.8921211361885071 1.4732000827789307 1 5 train 0.0003
18 6.716696262359619 6.597949028015137 0.00938733946532011 0.10935979336500168 0.8424934148788452 0.9225656390190125 0.9299852848052979 0.9832766652107239 0.8416697382926941 0.8883074522018433 1.1896507740020752 1 5 train 0.0003
19 7.947249412536621 7.840130805969238 0.0019211883191019297 0.10519733279943466 1.0035429000854492 1.0754042863845825 1.0464529991149902 0.9818789958953857 1.0473029613494873 1.0363423824310303 1.6492059230804443 1 5 train 0.0003
20 6.680519104003906 6.559668064117432 0.007290707901120186 0.11356010288000107 0.8235217332839966 0.9809489846229553 0.9036192893981934 1.006995677947998 0.713562548160553 0.8326672911643982 1.2983522415161133 1 5 val 0.0003
21 6.851324558258057 6.737933158874512 0.004844986833631992 0.10854636877775192 0.8285059332847595 0.9614267349243164 0.9598124027252197 0.9595887660980225 0.9242146015167236 0.8420833349227905 1.262300729751587 1 6 train 0.0003
22 6.636661052703857 6.5224127769470215 0.005599845666438341 0.10864809900522232 0.8119513392448425 0.9988837838172913 0.9559447765350342 0.9252693057060242 0.8798693418502808 0.8060524463653564 1.1444422006607056 1 6 train 0.0003
23 6.615643501281738 6.482783317565918 0.009343059733510017 0.1235172376036644 0.8345781564712524 0.944146990776062 0.9164608120918274 1.0260539054870605 0.8623217940330505 0.7997441291809082 1.099477767944336 1 6 train 0.0003
24 6.527048110961914 6.399297714233398 0.014145354740321636 0.113604836165905 0.8227241635322571 0.9640868306159973 0.8505197763442993 1.0070216655731201 0.7134379148483276 0.8419049978256226 1.1996021270751953 1 6 val 0.0003
25 6.4670023918151855 6.3380126953125 0.014950207434594631 0.11403925716876984 0.824800431728363 1.0293523073196411 0.9142779111862183 0.9236556887626648 0.7421441078186035 0.81830894947052 1.0854732990264893 1 7 train 0.0003
26 6.1625447273254395 6.035004138946533 0.013853533193469048 0.11368702352046967 0.777652382850647 0.9501878619194031 0.8602704405784607 0.8612244129180908 0.7263438105583191 0.7677097320556641 1.0916156768798828 1 7 train 0.0003
27 7.566514492034912 7.4626312255859375 0.0020726837683469057 0.10181055963039398 1.0083930492401123 0.9601494073867798 0.963032066822052 1.0626221895217896 0.9469616413116455 1.0017694234848022 1.5197031497955322 1 7 train 0.0003
28 6.419717788696289 6.290892601013184 0.009593304246664047 0.11923161894083023 0.790524423122406 0.95998615026474 0.825343668460846 0.98892742395401 0.7771551609039307 0.7969414591789246 1.1520142555236816 1 7 val 0.0003
29 6.689194202423096 6.573083877563477 0.005786233581602573 0.11032374948263168 0.9080209136009216 1.000887155532837 1.0325098037719727 0.9512050747871399 0.821114182472229 0.7950820922851562 1.0642645359039307 1 8 train 0.0003
30 6.201015472412109 6.065014839172363 0.010121933184564114 0.1258789747953415 0.8012807369232178 0.924811065196991 0.8745738863945007 0.9098770022392273 0.7564518451690674 0.7716119885444641 1.0264079570770264 1 8 train 0.0003
31 6.241023063659668 6.112045764923096 0.006602214649319649 0.12237487733364105 0.7613458037376404 0.9359737038612366 0.8572678565979004 0.9873223900794983 0.8272668123245239 0.7416355013847351 1.0012339353561401 1 8 train 0.0003
32 6.1948065757751465 6.060676097869873 0.01125525776296854 0.12287508696317673 0.7477758526802063 0.9442728757858276 0.8042873740196228 0.9706955552101135 0.7375473976135254 0.7367722988128662 1.1193243265151978 1 8 val 0.0003
33 6.120185375213623 5.979035377502441 0.007743759546428919 0.13340598344802856 0.8706233501434326 0.9525706768035889 0.8523128032684326 0.8648348450660706 0.6829875111579895 0.7010748982429504 1.0546314716339111 1 9 train 0.0003
34 5.915409564971924 5.774825096130371 0.010868947021663189 0.12971530854701996 0.7272200584411621 0.9213212132453918 0.8191920518875122 0.9692894816398621 0.64711993932724 0.703287661075592 0.9873946309089661 1 9 train 0.0003
35 5.9100022315979 5.766453266143799 0.0131101468577981 0.13043898344039917 0.7286690473556519 0.9551904797554016 0.8366042375564575 0.9062952399253845 0.6514343619346619 0.7199047803878784 0.9683547019958496 1 9 train 0.0003
36 6.107789516448975 5.976810455322266 0.01534278690814972 0.11563622951507568 0.7430071234703064 0.9376930594444275 0.7752532958984375 0.9619894623756409 0.6616294384002686 0.7144310474395752 1.1828067302703857 1 9 val 0.0003
37 6.41594934463501 6.300345420837402 0.005211083218455315 0.11039320379495621 0.7422681450843811 0.9889868497848511 0.7808048129081726 0.9130287766456604 0.8791047930717468 0.9210535883903503 1.0750982761383057 1 10 train 0.0003
38 6.026970863342285 5.893713474273682 0.018186138942837715 0.11507108062505722 0.7378060221672058 0.9279272556304932 0.8482496738433838 0.8846034407615662 0.6231086850166321 0.6787207126617432 1.1932977437973022 1 10 train 0.0003
39 5.717197418212891 5.570054531097412 0.012626754119992256 0.13451609015464783 0.7115041613578796 0.944779634475708 0.7982149124145508 0.9010587334632874 0.5982903242111206 0.6970875263214111 0.9191195368766785 1 10 train 0.0003
40 5.905582904815674 5.768206596374512 0.010409876704216003 0.1269664615392685 0.7309117317199707 0.9402284026145935 0.7412685751914978 0.9451155066490173 0.6191401481628418 0.709787130355835 1.081754446029663 1 10 val 0.0003
41 6.409829616546631 6.280038833618164 0.003664914285764098 0.12612581253051758 0.8859466910362244 0.961386501789093 0.795161783695221 0.9382650852203369 0.6643949747085571 0.9110893607139587 1.123794674873352 1 11 train 0.0003
42 6.130486965179443 5.984893798828125 0.006403588689863682 0.13918949663639069 0.7482903599739075 0.994562566280365 0.8841410875320435 0.8596857786178589 0.7557381987571716 0.6983357667922974 1.0441398620605469 1 11 train 0.0003
43 6.281919002532959 6.157470703125 0.004111180547624826 0.12033678591251373 0.7496722936630249 0.9410136342048645 0.7612969875335693 0.8973857760429382 0.8486009836196899 0.8773107528686523 1.0821900367736816 1 11 train 0.0003
44 6.1504387855529785 6.002274513244629 0.014571575447916985 0.13359244167804718 0.7516147494316101 0.9334716796875 0.7576376795768738 0.9518977999687195 0.7388054728507996 0.782760739326477 1.0860865116119385 1 11 val 0.0003
45 5.845081329345703 5.692966938018799 0.014751661568880081 0.13736280798912048 0.7230596542358398 0.9451721906661987 0.7899824380874634 0.8749344348907471 0.6915611028671265 0.7220256924629211 0.9462311863899231 1 12 train 0.0003
46 5.651827335357666 5.493503570556641 0.011095094494521618 0.1472286731004715 0.6854254007339478 0.9143739938735962 0.8092772960662842 0.8661447167396545 0.5605428814888 0.6640986204147339 0.9936407804489136 1 12 train 0.0003
47 5.3498687744140625 5.194234371185303 0.013182931579649448 0.1424514204263687 0.6888834238052368 0.8628398180007935 0.7077168226242065 0.8002668023109436 0.5681743621826172 0.6599993705749512 0.906353771686554 1 12 train 0.0003
48 5.799495697021484 5.659865379333496 0.013103306293487549 0.12652693688869476 0.6983110904693604 0.9171706438064575 0.7166934013366699 0.9221356511116028 0.6330077052116394 0.7016664147377014 1.070880651473999 1 12 val 0.0003
49 6.0885467529296875 5.9380292892456055 0.008310146629810333 0.14220724999904633 0.8606939911842346 0.9372515082359314 0.9461578130722046 0.8569806814193726 0.6745584011077881 0.6590127944946289 1.0033740997314453 1 13 train 0.0003
50 5.675293445587158 5.534573554992676 0.010567566379904747 0.13015222549438477 0.6721007227897644 0.8928897976875305 0.7421779632568359 0.8534233570098877 0.7509397268295288 0.6727702617645264 0.9502716064453125 1 13 train 0.0003
51 5.926846504211426 5.80724573135376 0.006775980349630117 0.11282502114772797 0.7018405199050903 0.9688824415206909 0.7070187330245972 0.8213016986846924 0.7876309752464294 0.8614835143089294 0.9590876698493958 1 13 train 0.0003
52 6.049322605133057 5.914888381958008 0.018060820177197456 0.11637360602617264 0.6995254755020142 0.9121129512786865 0.7570807337760925 0.9266914129257202 0.6497056484222412 0.7162448763847351 1.2535269260406494 1 13 val 0.0003
53 6.3320136070251465 6.207178592681885 0.006035778671503067 0.11879921704530716 0.9432967305183411 0.8958779573440552 0.8916606903076172 0.9335198998451233 0.8080214858055115 0.6783044934272766 1.0564972162246704 1 14 train 0.0003
54 5.662311553955078 5.51303768157959 0.01981467194855213 0.1294591724872589 0.6782334446907043 0.9302849173545837 0.797985315322876 0.771156370639801 0.6074199080467224 0.677891194820404 1.050066590309143 1 14 train 0.0003
55 5.618298053741455 5.487553119659424 0.008778586983680725 0.12196647375822067 0.6641225814819336 0.8900877237319946 0.7086762189865112 0.8519135117530823 0.6208586096763611 0.806084930896759 0.945809543132782 1 14 train 0.0003
56 5.772824764251709 5.633214950561523 0.015581930056214333 0.12402791529893875 0.6965301632881165 0.9012980461120605 0.7156088352203369 0.9158840775489807 0.6292036771774292 0.6802018284797668 1.0944883823394775 1 14 val 0.0003
57 6.70278787612915 6.56926155090332 0.00280315475538373 0.1307229995727539 0.7266584634780884 0.9501801133155823 0.7586874961853027 1.0222053527832031 0.8398897647857666 0.9294123649597168 1.3422281742095947 1 15 train 0.0003
58 5.590872287750244 5.447443008422852 0.013930978253483772 0.1294986456632614 0.7950136065483093 0.8714767098426819 0.7507262229919434 0.7867677211761475 0.5782331824302673 0.6486470103263855 1.0165784358978271 1 15 train 0.0003
59 5.54636287689209 5.400478363037109 0.010983103886246681 0.13490135967731476 0.8136737942695618 0.8751530051231384 0.8309832215309143 0.7922535538673401 0.566892683506012 0.6457376480102539 0.8757848739624023 1 15 train 0.0003
60 5.827330589294434 5.670465469360352 0.01470324955880642 0.14216190576553345 0.7344574928283691 0.9110319018363953 0.7107293605804443 0.9203230738639832 0.6420311331748962 0.6927222013473511 1.0591700077056885 1 15 val 0.0003
61 5.710087776184082 5.56077241897583 0.00969055574387312 0.13962438702583313 0.6694106459617615 0.9072568416595459 0.7192410230636597 0.9982930421829224 0.698897123336792 0.6761884689331055 0.8914855718612671 1 16 train 0.0003
62 5.338643550872803 5.174467086791992 0.0164132472127676 0.14776338636875153 0.690510630607605 0.8700519800186157 0.7301506996154785 0.8205276727676392 0.5880364179611206 0.6253100037574768 0.8498797416687012 1 16 train 0.0003
63 6.021578311920166 5.866046905517578 0.00619604904204607 0.1493353396654129 0.654011607170105 0.8944199681282043 0.7764189839363098 0.8347834944725037 0.5876349210739136 0.8218404054641724 1.2969377040863037 1 16 train 0.0003
64 5.731128692626953 5.579462051391602 0.013760479167103767 0.13790619373321533 0.6924800276756287 0.8931999206542969 0.7073994874954224 0.9120250344276428 0.6114590167999268 0.6794041991233826 1.0834945440292358 1 16 val 0.0003
65 5.158120632171631 4.999548435211182 0.01491368655115366 0.14365877211093903 0.6371273398399353 0.861148476600647 0.7131904363632202 0.8036531209945679 0.5343621969223022 0.6234765648841858 0.8265902400016785 1 17 train 0.0003
66 5.321131229400635 5.1615729331970215 0.013617838732898235 0.1459404081106186 0.6276907324790955 0.908044159412384 0.6943475604057312 0.7974045872688293 0.5653827786445618 0.6148292422294617 0.9538742303848267 1 17 train 0.0003
67 5.143588066101074 4.9937744140625 0.014162776991724968 0.1356511116027832 0.6478976011276245 0.8421540856361389 0.6913849115371704 0.8360010981559753 0.5234063267707825 0.6242671012878418 0.8286633491516113 1 17 train 0.0003
68 5.594232082366943 5.45277738571167 0.013003524392843246 0.12845151126384735 0.6797114610671997 0.8885740637779236 0.6898135542869568 0.9030547738075256 0.5895470380783081 0.6676763296127319 1.0344001054763794 1 17 val 0.0003
69 5.368498802185059 5.2202253341674805 0.009453575126826763 0.13881972432136536 0.6430709362030029 0.8087388873100281 0.8372854590415955 0.8044005036354065 0.6795669794082642 0.6247764825820923 0.8223861455917358 1 18 train 0.0003
70 5.8681321144104 5.732244491577148 0.007291741203516722 0.12859594821929932 0.8705033659934998 0.8633519411087036 0.8637886643409729 0.8256720304489136 0.7542574405670166 0.6480411887168884 0.9066302180290222 1 18 train 0.0003
71 5.718954086303711 5.578141212463379 0.008384020999073982 0.13242849707603455 0.6448687314987183 0.9305086135864258 0.6982876062393188 0.8305112719535828 0.5866897702217102 0.8245815634727478 1.0626938343048096 1 18 train 0.0003
72 5.829347133636475 5.681704521179199 0.019482428207993507 0.1281599998474121 0.7066282629966736 0.9193534255027771 0.7024063467979431 0.9110597968101501 0.6414604187011719 0.7192864418029785 1.0815097093582153 1 18 val 0.0003
73 5.380419731140137 5.227156639099121 0.014459383673965931 0.1388036012649536 0.6250629425048828 0.8876838088035583 0.7630653381347656 0.8432408571243286 0.6619153618812561 0.622134268283844 0.8240542411804199 1 19 train 0.0003
74 5.239847183227539 5.093515872955322 0.01640711911022663 0.1299244612455368 0.7525852918624878 0.8707149028778076 0.7181450724601746 0.7716505527496338 0.5476471781730652 0.617037832736969 0.8157346844673157 1 19 train 0.0003
75 5.271340847015381 5.1243062019348145 0.018368199467658997 0.12866659462451935 0.6336786150932312 0.8501956462860107 0.696098268032074 0.9321423172950745 0.5296956300735474 0.5889295339584351 0.8935662508010864 1 19 train 0.0003
76 5.677567958831787 5.5312628746032715 0.02021685428917408 0.12608827650547028 0.6774797439575195 0.8864014744758606 0.7238227725028992 0.8988562226295471 0.5911083221435547 0.6616537570953369 1.0919402837753296 1 19 val 0.0003
77 5.735899925231934 5.609894752502441 0.006657774094492197 0.11934778094291687 0.6603007316589355 0.8925167918205261 0.7879937291145325 0.7979409694671631 0.7400338053703308 0.828032374382019 0.9030763506889343 1 20 train 0.0003
78 5.122439861297607 4.967684268951416 0.021850906312465668 0.13290439546108246 0.606465756893158 0.8006309866905212 0.7192704081535339 0.8420177102088928 0.5238266587257385 0.6020098924636841 0.873462975025177 1 20 train 0.0003
79 5.043313503265381 4.89033842086792 0.019771547988057137 0.1332036703824997 0.5979106426239014 0.859144389629364 0.7122511267662048 0.8057422041893005 0.516836941242218 0.6161125898361206 0.7823407053947449 1 20 train 0.0003
80 5.549328804016113 5.399530410766602 0.014556347392499447 0.13524198532104492 0.6689233183860779 0.8795095086097717 0.692929208278656 0.8898061513900757 0.5840669870376587 0.654992401599884 1.0293024778366089 1 20 val 0.0003
81 5.329991340637207 5.17622709274292 0.011414320208132267 0.14234954118728638 0.7639520764350891 0.8525948524475098 0.738831102848053 0.7719693183898926 0.5499542951583862 0.6127482652664185 0.8861774206161499 1 21 train 0.0003
82 4.8253021240234375 4.669595718383789 0.015647443011403084 0.14005905389785767 0.5973871946334839 0.7923392653465271 0.6582180857658386 0.8025152683258057 0.47689226269721985 0.5948395729064941 0.7474039196968079 1 21 train 0.0003
83 5.088851451873779 4.937555313110352 0.011905369348824024 0.1393907517194748 0.5934943556785583 0.8428484797477722 0.6774017214775085 0.7955939769744873 0.6481826305389404 0.6052728295326233 0.774761438369751 1 21 train 0.0003
84 5.60770320892334 5.452741622924805 0.013730620965361595 0.14123110473155975 0.6728692650794983 0.8777675032615662 0.6875078082084656 0.8905475735664368 0.5854867696762085 0.6627615690231323 1.0758006572723389 1 21 val 0.0003
85 6.068558692932129 5.91756534576416 0.005037747789174318 0.14595571160316467 0.8059160113334656 0.896769106388092 0.7496870756149292 0.8122365474700928 0.6422881484031677 0.8352273106575012 1.1754412651062012 1 22 train 0.0003
86 5.702797889709473 5.548972129821777 0.007566966116428375 0.1462586373090744 0.7800449728965759 0.8777520656585693 0.7473477721214294 0.8955624103546143 0.5592642426490784 0.6355087161064148 1.0534919500350952 1 22 train 0.0003
87 5.280300140380859 5.128979682922363 0.009189868345856667 0.14213037490844727 0.6122812032699585 0.8207741379737854 0.6751571893692017 0.9238495826721191 0.6595634818077087 0.6192294955253601 0.8181247711181641 1 22 train 0.0003
88 6.213028907775879 6.045575141906738 0.02380366064608097 0.1436501294374466 0.7975243926048279 1.007731318473816 0.7504138350486755 0.9291645884513855 0.7078506350517273 0.8103178143501282 1.0425727367401123 1 22 val 0.0003
89 5.107253551483154 4.935534477233887 0.0239325612783432 0.14778661727905273 0.6977044939994812 0.848562479019165 0.6710015535354614 0.729554295539856 0.5999447107315063 0.633414626121521 0.7553525567054749 1 23 train 0.0003
90 5.908516883850098 5.766394138336182 0.006061450112611055 0.13606135547161102 0.6413773894309998 0.888952374458313 0.8358990550041199 0.8103705048561096 0.7262758612632751 0.8286022543907166 1.034916877746582 1 23 train 0.0003
91 5.020779609680176 4.856267929077148 0.02415643259882927 0.14035528898239136 0.595343291759491 0.8234890699386597 0.7370042204856873 0.8070865869522095 0.5286579132080078 0.5673853754997253 0.7973018884658813 1 23 train 0.0003
92 5.619795799255371 5.4671549797058105 0.021314680576324463 0.13132628798484802 0.6834062933921814 0.8808044195175171 0.7129113674163818 0.8969656825065613 0.5916205048561096 0.6668748259544373 1.0345720052719116 1 23 val 0.0003
93 5.5681915283203125 5.432429790496826 0.007783341221511364 0.12797856330871582 0.6419991850852966 0.9063147306442261 0.6711031794548035 0.8405236601829529 0.7042803168296814 0.7920283675193787 0.8761802911758423 1 24 train 0.0003
94 4.8354034423828125 4.67948579788208 0.022869499400258064 0.13304796814918518 0.5750352144241333 0.770186722278595 0.6975377202033997 0.7520934343338013 0.5121550559997559 0.5788410902023315 0.7936364412307739 1 24 train 0.0003
95 4.905447959899902 4.74376916885376 0.023883502930402756 0.1377953141927719 0.5903372168540955 0.8115391135215759 0.7869781851768494 0.7425273060798645 0.5082953572273254 0.584445595741272 0.7196465730667114 1 24 train 0.0003
96 5.481956481933594 5.334254264831543 0.017054028809070587 0.13064803183078766 0.6531577706336975 0.8567045331001282 0.6783541440963745 0.8829954862594604 0.6125552654266357 0.6472066044807434 1.0032806396484375 1 24 val 0.0003
97 4.766356945037842 4.60905122756958 0.01891101710498333 0.13839469850063324 0.5718674659729004 0.7915330529212952 0.7033721208572388 0.7608851790428162 0.5038546323776245 0.581145703792572 0.696392834186554 1 25 train 0.0003
98 4.840872764587402 4.690352439880371 0.01508802454918623 0.1354321390390396 0.5857200622558594 0.8334798812866211 0.6762959361076355 0.6903141140937805 0.6166731715202332 0.5849531292915344 0.7029160261154175 1 25 train 0.0003
99 5.174996376037598 5.031275749206543 0.010087499395012856 0.13363300263881683 0.5828701257705688 0.8449770212173462 0.6459877490997314 0.8134022355079651 0.5469710230827332 0.7708718776702881 0.8261958956718445 1 25 train 0.0003
100 5.503371715545654 5.352008819580078 0.015937576070427895 0.1354251205921173 0.6469747424125671 0.8607352375984192 0.6654468774795532 0.8853604197502136 0.6101869344711304 0.6697723865509033 1.0135324001312256 1 25 val 0.0003