[295c34]: / data / LGG / data_merge_small_pathway.m

Download this file

179 lines (150 with data), 4.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
clear
%% read KEGG
% [num,txt,raw] = xlsread('c2.cp.kegg.v5.2.symbols.xlsx');
%
% for i=1:size(raw,1)
% KEGG_Pathway(i).name=raw{i,1};
%
% genes={};
% for j=3:size(raw,2)
% gene=raw{i, j};
%
% if isnan(gene)==1
% break;
% else
% genes=[genes;gene];
% end
% end
% KEGG_Pathway(i).genes=genes;
% end
%
% %% read clinical variables
% [num,txt,raw] = xlsread('data_bcr_clinical_data_patient.xlsx');
%
% TCGA_ID = raw(6:end,2);
% GENDER = raw(6:end,11);
% AGE = cell2mat(raw(6:end,53));
% OS_STATUS = raw(6:end,64);
% OS_MONTHS = cell2mat(raw(6:end,65));
%
%
% %% read expression data
% [num,txt,raw] = xlsread('data_RNA_Seq_v2_mRNA_median_Zscores.xlsx');
% EXP_ID=raw(1,3:end);
% EXP_Data=num(:,2:end);
% EXP_Gene=raw(2:end,1);
%
% %% read CNV data
% [num,txt,raw] = xlsread('data_CNA.xlsx');
% CNV_ID=raw(1,3:end);
% CNV_Data=num(:,2:end);
% CNV_Gene=raw(2:end,1);
%
% %% read methylation data
% [num,txt,raw] = xlsread('data_methylation_hm450.xlsx');
% MT_ID_450=raw(1,3:end);
% MT_Data_450=num(:,2:end);
% MT_Gene_450=raw(2:end,1);
%
% save all_data KEGG_Pathway TCGA_ID GENDER AGE OS_STATUS OS_MONTHS EXP_ID EXP_Data EXP_Gene CNV_ID CNV_Data CNV_Gene MT_ID_450 MT_Data_450 MT_Gene_450
%% loading
load all_data
%% unique KEGG pathway genes
genes={};
for i=1:length(KEGG_Pathway)
genes= [genes;KEGG_Pathway(i).genes];
end
uni_genes=unique(genes);
MT_ID=MT_ID_450;
MT_Data=MT_Data_450;
MT_Gene=MT_Gene_450;
EXP_Data=EXP_Data';
CNV_Data=CNV_Data';
MT_Data=MT_Data';
%% so far so good
%% sample overlapping checking based on TCGA
for i=1:length(EXP_ID)
id1=EXP_ID{i};
EXP_ID{i}=id1(1:12);
end
[C,ia,ib] = intersect(TCGA_ID,EXP_ID);
for i=1:length(CNV_ID)
id1=CNV_ID{i};
CNV_ID{i}=id1(1:12);
end
[C1,ia,ib] = intersect(CNV_ID,C);
for i=1:length(MT_ID)
id1=MT_ID{i};
MT_ID{i}=id1(1:12);
end
[C2,ia,ib] = intersect(MT_ID,C1);
Common_samples_EXP_CNV_MT=C2;
%% extract overlapping data
STATUS=[];
for i=1:length(OS_STATUS)
stat=OS_STATUS{i};
stat=stat(1);
STATUS=[STATUS;str2num(stat)];
end
SEX=[];
for i=1:length(GENDER)
stat=GENDER(i);
if strcmp(upper(stat),'FEMALE')==1
SEX=[SEX;1];
elseif strcmp(upper(stat),'MALE')==1
SEX=[SEX;0];
end
end
%% Clinical data
Clinical_data=[SEX AGE STATUS OS_MONTHS];
[D,ia,ib] = intersect(TCGA_ID,Common_samples_EXP_CNV_MT);
valid_Clinical_data=Clinical_data(ia,:);
%% Expression
[D1,ia,ib] = intersect(EXP_ID,Common_samples_EXP_CNV_MT);
valid_EXP_Data=EXP_Data(ia,:);
%% CNV
[D2,ia,ib] = intersect(CNV_ID,Common_samples_EXP_CNV_MT);
valid_CNV_Data=CNV_Data(ia,:);
%% MT
[D3,ia,ib] = intersect(MT_ID,Common_samples_EXP_CNV_MT);
valid_MT_Data=MT_Data(ia,:);
%% PCA per Pathway
PCA_EXP=[];
PCA_CNV=[];
PCA_MT=[];
missing_EXP=[];
missing_CNV=[];
missing_MT=[];
all_pathway_genes={};
PC=5;
for i=1:146 % 146 pathway
i
pathway_genes=KEGG_Pathway(i).genes;
all_pathway_genes=[all_pathway_genes;pathway_genes];
%% expression
[E1,ia,ib] = intersect(EXP_Gene,pathway_genes);
exp=valid_EXP_Data(:,ia);
idx=find(sum(isnan(exp))==0);
[coeff,score,latent] = pca(exp(:,idx));
PCA_EXP=[PCA_EXP score(:,1:PC)];
missing_EXP=[missing_EXP;length(pathway_genes)-length(E1)];
%% CNV
[E2,ia,ib] = intersect(CNV_Gene,pathway_genes);
cnv=valid_CNV_Data(:,ia);
idx=find(sum(isnan(cnv))==0);
[coeff,score,latent] = pca(cnv(:,idx));
PCA_CNV=[PCA_CNV score(:,1:PC)];
missing_CNV=[missing_CNV;length(pathway_genes)-length(E2)];
%% MT
[E3,ia,ib] = intersect(MT_Gene,pathway_genes);
mt=valid_MT_Data(:,ia);
idx=find(sum(isnan(mt))==0);
[coeff,score,latent] = pca(mt(:,idx));
if i==7
PCA_MT=[PCA_MT [score(:,1:4) score(:,4)]]; % due to there are only 4, 4th colume was duplicated.
else
PCA_MT=[PCA_MT score(:,1:PC)];
end
missing_MT=[missing_MT;length(pathway_genes)-length(E3)];
end
save PCA_results PCA_EXP PCA_CNV PCA_MT PC valid_Clinical_data Common_samples_EXP_CNV_MT