|
a |
|
b/openomics_web/app.py |
|
|
1 |
import dash |
|
|
2 |
import dash_html_components as html |
|
|
3 |
from dash.dependencies import Input, Output, State |
|
|
4 |
|
|
|
5 |
from openomics import MultiOmics |
|
|
6 |
from openomics_web.layouts import app_layout |
|
|
7 |
from openomics_web.layouts.clinical_view import ClinicalDataColumnSelect, ClinicalDataTable |
|
|
8 |
from openomics_web.layouts.datatable_view import ExpressionDataTable, DataTableColumnSelect, split_filter_part |
|
|
9 |
from openomics_web.server import server |
|
|
10 |
from openomics_web.utils.io import get_table_columns, get_expression_data, get_clinical_data |
|
|
11 |
|
|
|
12 |
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] |
|
|
13 |
|
|
|
14 |
# running directly with Python |
|
|
15 |
app = dash.Dash(__name__, |
|
|
16 |
server=server, |
|
|
17 |
external_stylesheets=external_stylesheets) |
|
|
18 |
|
|
|
19 |
app.layout = app_layout.app_main() |
|
|
20 |
|
|
|
21 |
user_multiomics = MultiOmics(cohort_name="TEST", ) |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
@app.callback([ |
|
|
25 |
Output('data-table-column-select', 'children'), |
|
|
26 |
Output('upload-data-table', 'children') |
|
|
27 |
], [ |
|
|
28 |
Input('upload-data-table', 'contents'), |
|
|
29 |
Input('upload-data-table', 'filename') |
|
|
30 |
], [ |
|
|
31 |
State('data-table-type', 'value'), |
|
|
32 |
]) |
|
|
33 |
def update_datatable_metadata( |
|
|
34 |
list_of_contents, |
|
|
35 |
list_of_names, |
|
|
36 |
data_type, |
|
|
37 |
): |
|
|
38 |
""" |
|
|
39 |
Args: |
|
|
40 |
list_of_contents: |
|
|
41 |
list_of_names: |
|
|
42 |
data_type: |
|
|
43 |
""" |
|
|
44 |
if list_of_contents is None: |
|
|
45 |
return None, ['Drag and Drop or ', html.A('Select Files')] |
|
|
46 |
|
|
|
47 |
try: |
|
|
48 |
columns = get_table_columns(list_of_contents, list_of_names) |
|
|
49 |
|
|
|
50 |
except Exception as e: |
|
|
51 |
print(e) |
|
|
52 |
return None, 'There was an error processing this file.' |
|
|
53 |
|
|
|
54 |
return DataTableColumnSelect(columns), "Uploaded {}".format(list_of_names) |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
@app.callback(Output('output-data-upload', 'children'), |
|
|
58 |
[Input('upload-data-table-submit', 'n_clicks')], [ |
|
|
59 |
State('data-table-cohort', 'value'), |
|
|
60 |
State('data-table-type', 'value'), |
|
|
61 |
State('upload-data-table', 'contents'), |
|
|
62 |
State('upload-data-table', 'filename'), |
|
|
63 |
State('data-table-genes-col-name', 'value'), |
|
|
64 |
State('data-table-columns-select', 'value'), |
|
|
65 |
State('data-table-transpose', 'value') |
|
|
66 |
]) |
|
|
67 |
def import_datatable_upload(n_clicks, cohort_name, data_type, list_of_contents, |
|
|
68 |
list_of_names, genes_col_name, columns_select, |
|
|
69 |
transposed): |
|
|
70 |
""" |
|
|
71 |
Args: |
|
|
72 |
n_clicks: |
|
|
73 |
cohort_name: |
|
|
74 |
data_type: |
|
|
75 |
list_of_contents: |
|
|
76 |
list_of_names: |
|
|
77 |
genes_col_name: |
|
|
78 |
columns_select: |
|
|
79 |
transposed: |
|
|
80 |
""" |
|
|
81 |
if list_of_contents is None: |
|
|
82 |
return [] |
|
|
83 |
try: |
|
|
84 |
|
|
|
85 |
omics_data = get_expression_data(list_of_contents, list_of_names, |
|
|
86 |
data_type, cohort_name, |
|
|
87 |
genes_col_name, columns_select, |
|
|
88 |
transposed) |
|
|
89 |
user_multiomics.add_omic(omics_data) |
|
|
90 |
except Exception as e: |
|
|
91 |
print(e) |
|
|
92 |
return html.Div(['There was an error processing this file.']) |
|
|
93 |
|
|
|
94 |
return ExpressionDataTable(omics_data.expressions.head(20)) |
|
|
95 |
|
|
|
96 |
|
|
|
97 |
@app.callback(Output('expression-datatable', "data"), [ |
|
|
98 |
Input('expression-datatable', "page_current"), |
|
|
99 |
Input('expression-datatable', "page_size"), |
|
|
100 |
Input('expression-datatable', "sort_by"), |
|
|
101 |
Input('expression-datatable', "filter_query") |
|
|
102 |
]) |
|
|
103 |
def update_table(page_current, page_size, sort_by, filter): |
|
|
104 |
""" |
|
|
105 |
Args: |
|
|
106 |
page_current: |
|
|
107 |
page_size: |
|
|
108 |
sort_by: |
|
|
109 |
filter: |
|
|
110 |
""" |
|
|
111 |
filtering_expressions = filter.split(' && ') |
|
|
112 |
print(user_multiomics.get_omics_list()) |
|
|
113 |
dff = user_multiomics[user_multiomics.get_omics_list()[0]] |
|
|
114 |
for filter_part in filtering_expressions: |
|
|
115 |
col_name, operator, filter_value = split_filter_part(filter_part) |
|
|
116 |
|
|
|
117 |
if operator in ('eq', 'ne', 'lt', 'le', 'gt', 'ge'): |
|
|
118 |
# these operators match pandas series operator method names |
|
|
119 |
dff = dff.loc[getattr(dff[col_name], operator)(filter_value)] |
|
|
120 |
elif operator == 'contains': |
|
|
121 |
dff = dff.loc[dff[col_name].str.contains(filter_value)] |
|
|
122 |
elif operator == 'datestartswith': |
|
|
123 |
# this is a simplification of the front-end filtering logic, |
|
|
124 |
# only works with complete fields in standard format |
|
|
125 |
dff = dff.loc[dff[col_name].str.startswith(filter_value)] |
|
|
126 |
|
|
|
127 |
if sort_by: |
|
|
128 |
dff = dff.sort_values( |
|
|
129 |
[col['column_id'] for col in sort_by], |
|
|
130 |
ascending=[col['direction'] == 'asc' for col in sort_by], |
|
|
131 |
inplace=False) |
|
|
132 |
|
|
|
133 |
return dff.iloc[page_current * page_size:(page_current + 1) * |
|
|
134 |
page_size].to_dict('records') |
|
|
135 |
|
|
|
136 |
|
|
|
137 |
@app.callback( |
|
|
138 |
[ |
|
|
139 |
Output('clinical-column-select', 'children'), |
|
|
140 |
Output('upload-clinical', 'children') |
|
|
141 |
], |
|
|
142 |
[ |
|
|
143 |
Input('upload-clinical', 'contents'), |
|
|
144 |
Input('upload-clinical', 'filename') |
|
|
145 |
], |
|
|
146 |
) |
|
|
147 |
def update_clinical_upload_metadata( |
|
|
148 |
file_content, |
|
|
149 |
file_name, |
|
|
150 |
): |
|
|
151 |
""" |
|
|
152 |
Args: |
|
|
153 |
file_content: |
|
|
154 |
file_name: |
|
|
155 |
""" |
|
|
156 |
if file_content is None: |
|
|
157 |
return None, ['Drag and Drop or ', html.A('Select Files')] |
|
|
158 |
|
|
|
159 |
try: |
|
|
160 |
columns = get_table_columns([ |
|
|
161 |
file_content, |
|
|
162 |
], [ |
|
|
163 |
file_name, |
|
|
164 |
]) |
|
|
165 |
|
|
|
166 |
except Exception as e: |
|
|
167 |
print(e) |
|
|
168 |
return None, 'There was an error processing this file.' |
|
|
169 |
|
|
|
170 |
return ClinicalDataColumnSelect(columns), "Uploaded {}".format(file_name) |
|
|
171 |
|
|
|
172 |
|
|
|
173 |
@app.callback(Output('output-clinical-upload', 'children'), |
|
|
174 |
[Input('clinical-submit-button', 'n_clicks')], [ |
|
|
175 |
State('clinical-cohort', 'value'), |
|
|
176 |
State('clinical-data-type', 'value'), |
|
|
177 |
State('upload-clinical', 'contents'), |
|
|
178 |
State('upload-clinical', 'filename'), |
|
|
179 |
State('clinical-patient-col-name', 'value'), |
|
|
180 |
State('clinical-data-columns-select', 'value'), |
|
|
181 |
]) |
|
|
182 |
def import_datatable_upload(n_clicks, cohort_name, data_type, list_of_contents, |
|
|
183 |
list_of_names, patient_id_col, columns_select): |
|
|
184 |
""" |
|
|
185 |
Args: |
|
|
186 |
n_clicks: |
|
|
187 |
cohort_name: |
|
|
188 |
data_type: |
|
|
189 |
list_of_contents: |
|
|
190 |
list_of_names: |
|
|
191 |
patient_id_col: |
|
|
192 |
columns_select: |
|
|
193 |
""" |
|
|
194 |
if list_of_contents is None: |
|
|
195 |
return [] |
|
|
196 |
try: |
|
|
197 |
clinical_data = get_clinical_data(list_of_contents, list_of_names, |
|
|
198 |
data_type, cohort_name, |
|
|
199 |
patient_id_col, columns_select) |
|
|
200 |
user_multiomics.add_clinical_data(clinical_data) |
|
|
201 |
except Exception as e: |
|
|
202 |
print(e) |
|
|
203 |
return html.Div(['There was an error processing this file.']) |
|
|
204 |
|
|
|
205 |
return ClinicalDataTable(clinical_data.patient.head(20)) |
|
|
206 |
|
|
|
207 |
|
|
|
208 |
if __name__ == '__main__': |
|
|
209 |
app.run_server(debug=False, port=8050) |