[e26484]: / OmicsFold / R / sample_analysis.R

Download this file

420 lines (358 with data), 16.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#' A null device for running plot functions without outputting graphics.
.nulldev <- function(file = nullfile(), ...) {
type <- getOption("R.devices.nulldev", "pdf")
do.call(type, args = list(nullfile()))
}
#' Get block centroids for a DIABLO model
#'
#' @description
#' Function to get the centroids of samples transformed into the same model
#' space across all blocks for a trained multi-omics mixOmics (DIABLO) model.
#' Prepares plots and raw data of consensus sample classification, which (for
#' some reason) isn't provided in the base package.
#'
#' @param diablo.trained Trained multi-omics mixOmics DIABLO model.
#'
#' @return Simple object containing consensus data (as `consensus.summary`) and
#' a ggplot plot of the distribution in the first two components (as `plot`).
#' @export
#'
#' @examples
#' \dontrun{
#' consensus.centroids <- get.block.centroids(diablo.trained.analysis, 20, 3)
#' print(consensus.centroids$plot)
#' }
get.block.centroids <- function(diablo.trained) {
# Establish dimensionality
block.count <- length(diablo.trained$X)
sample.count <- length(diablo.trained$Y)
comp.count <- diablo.trained$ncomp[1]
# Perform the same analysis as the arrow plot -- sending graphics output to
# the null device
.nulldev()
# Set up the initial columns
arrow <- mixOmics::plotArrow(diablo.trained)
consensus <- data.frame(arrow$Block, arrow$group)
consensus$sample <- rep(1:sample.count, block.count + 1)
# Add component columns 1 at a time using arrow plots
comp.col.names <- vector()
for (comp in 1:comp.count) {
comp.col.name <- sprintf("comp%i", comp)
comp.col.names[comp] <- comp.col.name
arrow <- mixOmics::plotArrow(diablo.trained, comp = c(1, comp))
consensus[,comp.col.name] <- arrow$y
}
# Remove the outcome block
consensus <- subset(consensus, !(arrow.Block == "Block: Y"))
# Perform a group by on each sample, finding the centroid of each
consensus.summary <- consensus %>%
dplyr::group_by(sample, arrow.group) %>%
dplyr::summarise_at(comp.col.names, mean)
colnames(consensus.summary)[2] <- "label"
dev.off()
# Plot the consensus plot
p <- ggplot2::ggplot(consensus.summary,
ggplot2::aes(comp1, comp2, color = label))
p <- p + ggplot2::geom_point() + ggplot2::stat_ellipse()
# Return the consensus values
return(list("consensus" = consensus.summary, "plot" = p))
}
#' Plot projections for a prediction result
#'
#' @description
#' Function to plot a single-omics sPLS-DA prediction projected into the model
#' space. While confusion matrices of predicted data can easily be obtained,
#' there is no built-in function to plot the projection into the model space and
#' hence give a visualisation of the quality of the prediction. The plot will
#' show the centroids of the classes as large points, surrounded by the sample
#' projection as small points, coloured according to class. A good prediction
#' will cluster each class around the appropriate centroid.
#'
#' @param prediction mixOmics sPLS-DA prediction object, generated by the
#' `predict` method.
#' @param classes.new Factor indicating the classes of the new data.
#'
#' @return ggplot plot of the predicted data in the sPLS-DA model space.
#' @export plot.predicted.projection
#'
#' @examples
#' \dontrun{
#' prediction.projection <- plot.predicted.projection(prediction.replicate.data, replicate.data.classes)
#' print(prediction.projection)
#' }
plot.predicted.projection <- function(prediction, classes.new) {
variates <- as.data.frame(prediction$variates[,1:2])
variates$label <- classes.new
colnames(variates) <- c("Component1", "Component2", "label")
p <- ggplot2::ggplot(variates, ggplot2::aes(x=Component1, y=Component2)) +
ggplot2::geom_point(ggplot2::aes(color=label)) +
ggplot2::theme_bw()
classes.count <- length(levels(classes.new))
pal <- scales::hue_pal()(classes.count)
for (i in seq(1, classes.count)) {
p <- p + annotate("point", x = prediction$centroids[i,1],
y = prediction$centroids[i,2], color = pal[[i]], cex = 6)
}
return(p)
}
#' Extract feature associations from a multi-omics DIABLO model
#'
#' @description
#' Extract feature vs. feature association (mutual information) data from a
#' multi-omics mixOmics (DIABLO) model. This is the
#' same data used to create the circos and network plots, but includes all
#' interactions for the top features according to either blockrank or loading scores.
#'
#' @param diablo.model Trained mixOmics multi-omics (DIABLO) model.
#' @param feature_number Number of top features to select (default set to 20). If using loading scores,
#' top features will be evenly divided across the number of blocks.
#' @param score_type Type of score to select top features by. Accepted options: "blockrank" or "loading"
#' (default set to "blockrank")
#'
#' @return Matrix including the associations of top selected features in DIABLO model according
#' to either blockrank scores or loading values
#'
#' @export
#'
#' @examples
#' \dontrun{
#' find.feature.associations(diablo.model, feature_number=50, score_type="blockrank")
#' }
find.feature.associations <- function(diablo.model, feature_number=20, score_type="blockrank") {
#Extract the covariance matrix from the circosPlot function. Disable
#graphical output to avoid it being overwhelmed
circos <- mixOmics::circosPlot(diablo.model, cutoff=0.7,
line = TRUE, size.labels = 1.5)
dev.off()
if (score_type == "blockrank"){
#find top features across all blocks by ranking blockrank scores high to low
#run diablo blockrank
blockrank.i <- blockrank.diablo(diablo.model)
#compile blockrank results
plot.data <- vector(mode = "list", length = length(blockrank.i))
for (q in seq_along(blockrank.i)){
block <- names(blockrank.i)[q]
feature <- names(blockrank.i[[q]])
blockrank.score <- blockrank.i[[q]]
plot.data[[q]] <- data.frame(block, feature, blockrank.score)
}
plot.data <- bind_rows(plot.data)
plot.data <- arrange(plot.data, desc(blockrank.score))
#filter to desired number of features
plot.data <- head(plot.data,n=feature_number)
#Find the top factors across all blocks
selected.features <- plot.data$feature
} else if (score_type == "loading") {
#Find the top n features across all blocks according to loading score.
#Divide by feature_number by number of blocks to evenly attain number of scores per block
blocks <- length(diablo.model$loadings)-1
feature_number_per_block <- round(feature_number/blocks, digits = 0)
loading_scores <- vector(mode = "list", length = length(blocks))
for (i in 1:blocks){
dev.new(width = 3000, height = 3000, unit = "px")
loadings <- mixOmics::plotLoadings(diablo.model, block=i, comp = 1,
contrib = 'max', method = 'median',
ndisplay=feature_number_per_block)
loading_scores[[i]] <- data.frame(rownames(loadings))
dev.off()
}
loading_scores <- bind_rows(loading_scores)
selected.features <- loading_scores$rownames.loadings.
} else{
stop("score_type must be one of the following: blockrank, loading", call.=FALSE)
}
#Filter the covariance matrix for the top features based on blockrank scores
circos.selected <- circos[rownames(circos) %in% selected.features,
colnames(circos) %in% selected.features]
diag(circos.selected) <- 1
# Return the covariance matrix
return(circos.selected)
}
#' Filter and reformat feature association matrix
#'
#' @description
#' Reformats association matrix into network dataframe.
#' Filters feature network to remove associations that do not meet a correlation cut off.
#' Filters feature network to remove associations between features from the same block.
#' Filters feature network to only include associations to a list of selected features.
#'
#'
#' @param diablo.model Trained mixOmics multi-omics (DIABLO) model
#' @param associations Matrix consisting the associations of top discriminative features from find.feature.associations()
#' @param feature_list List of features of interest to filter network by. If argument not supplied, network will not be filtered
#' @param cutoff Correlation cut off to filter feature network. (default set to 0.7)
#' @param remove_intrablock If set to TRUE, removes associations between features from the same block (default set to FALSE)
#'
#' @return Dataframe describing associations between features and their blocks
#'
#' @export
#'
#' @examples
#' \dontrun{
#' filter.network(diablo.model=diablo.model, associations=associations, cutoff=0.7, feature_list= feature_list, remove_intrablock = FALSE)
#' }
filter.network <- function(diablo.model, associations, feature_list=NULL, cutoff=0.7, remove_intrablock=FALSE){
'%!in%' <- function(x,y)!('%in%'(x,y))
#generate block names for all features in model
feature_block_names <- data.frame()
number_of_blocks <- length(diablo.model$loadings)-1
for (i in 1:number_of_blocks) {
active.block <- diablo.model$loadings[[i]]
active.block.names <- data.frame(rownames(active.block), names(diablo.model$loadings[i]))
feature_block_names <- rbind(feature_block_names, active.block.names)
}
#identify blocks for top features
block_association <- feature_block_names[feature_block_names$rownames.active.block. %in% rownames(associations),]$names.diablo.model.loadings.i..
#export network file with correlation cut off
network <- export.matrix.as.network(associations, cutoff= cutoff,
filename = "network.csv", block.association = block_association)
if (is.null(feature_list)){
#not filtering network by top features
#merge in block names for nodes
network_subset_merged <- merge(network, feature_block_names, by.x="feature.2", by.y="rownames.active.block.", all.x = TRUE)
names(network_subset_merged)[4] <- "feature.1_block"
names(network_subset_merged)[5] <- "feature.2_block"
network <- network_subset_merged %>% select("feature.1", "feature.2", "value", "feature.1_block", "feature.2_block")
}
else{
#subset network to only include associations with features of interest
network_subset_switch <- network[network$feature.1 %in% feature_list | network$feature.2 %in% feature_list,]
#conditionally switching features where the feature of interest node is in second column
#identify which rows need to be switched and do not have the correct source node
i <- which(network_subset_switch$feature.2 %in% feature_list)
#create vectors with new row values
new_feature_1 <- as.character(network_subset_switch$feature.2[i])
new_feature_2 <- as.character(network_subset_switch$feature.1[i])
#change row values for the rows that need to be switched
network_subset_switch$feature.1[i] <- new_feature_1
network_subset_switch$feature.2[i] <- new_feature_2
#merge in block names for nodes
network_subset_merged <- merge(network_subset_switch, feature_block_names, by.x="feature.2", by.y="rownames.active.block.", all.x = TRUE)
names(network_subset_merged)[4] <- "feature.1_block"
names(network_subset_merged)[5] <- "feature.2_block"
network <- network_subset_merged %>% select("feature.1", "feature.2", "value", "feature.1_block", "feature.2_block")
#add error message if a feature of interest is not in top n features by blockrank score or loading score
feature_found <- FALSE
for (i in seq_along(feature_list)){
if (feature_list[i] %in% network$feature.1) {
feature_found <- TRUE
}
else if (feature_list[i] %!in% network$feature.1) {
message(paste0(feature_list[i], " is not present in top features selected"))
}
}
if(feature_found == FALSE) {
stop("None of the entered features are in the top selected features", call.=FALSE)
}
}
#remove intrablock connections if TRUE
if (remove_intrablock == TRUE){
#create primary key for each id
network$id <- rownames(network)
#identify intrablock connections to remove
network_to_remove <- network[network$feature.1_block == network$feature.2_block,]
#remove the unwanted intrablock connections
network <- network[network$id %!in% network_to_remove$id,]
#remove primary key
network$id <- NULL
}
#stop function is network has been filtered to to 0 associations
if (nrow(network) < 1){
stop("Final network is empty. Please try again with different parameters.", call.=FALSE)
}
return(network)
}
#' Visualize feature interaction network
#'
#' @description
#' Plots feature interaction network output dataframe from filter.network(). Nodes represent biological features and edges
#' represents correlations between nodes. Nodes are colored by block and edges are colored by correlation value.
#' Uses Kamada-Kawai layout algorithm to position nodes. More strongly connected nodes will be pulled together,
#' while more weakly connected nodes will pushed away from other nodes.
#'
#'
#' @param omicsfold_network Network dataframe generated by filter.network() that describes
#' associations between features and their associated blocks
#' @param diablo.model Trained mixOmics multi-omics (DIABLO) model
#'
#' @return Visualization of feature interaction network
#'
#' @export
#'
#' @examples
#' \dontrun{
#' plot.network(omicsfold_network=omicsfold_network, diablo.model=diablo.model)
#' }
#visualize network
plot.network <- function(omicsfold_network, diablo.model){
#plot network
thm <- theme_minimal() +
theme(
axis.title = element_blank(),
axis.text = element_blank(),
panel.grid = element_blank(),
panel.grid.major = element_blank(),
)
theme_set(thm)
final_network_graph <- as_tbl_graph(omicsfold_network)
final_network_graph <- final_network_graph %>%
activate(nodes) %>%
mutate(
title = str_to_title(name),
label = str_replace_all(title, " ", "\n")
)
#generate block names for all features in model
feature_block_names <- data.frame()
number_of_blocks <- length(diablo.model$loadings)-1
for (i in 1:number_of_blocks) {
active.block <- diablo.model$loadings[[i]]
active.block.names <- data.frame(rownames(active.block), names(diablo.model$loadings[i]))
feature_block_names <- rbind(feature_block_names, active.block.names)
}
names(feature_block_names)[2] <- "block"
#merge in block data
final_network_graph <- left_join(final_network_graph %>%
activate(nodes), feature_block_names, by= c("name" = "rownames.active.block."))
network_plot <- final_network_graph %>%
ggraph(layout = "kk") +
geom_edge_link(aes(color = value), edge_width=3, alpha = 0.7) +
scale_edge_colour_continuous(
low = "orange",
high = "red",
space = "Lab",
na.value = "grey50",
guide = "edge_colourbar")+
geom_node_point(size=6,show.legend = FALSE)+
geom_node_label(aes(label=name, fill=block), repel = T, show.legend = TRUE, alpha=0.9,
color = "white", # text
size = 5, # font size
label.r = unit(20, "pt"), # corner radius of label box
label.size = .1, # label border size
label.padding = unit(1, "lines"))
return(network_plot)
}
.order.circos.selected <- function(circos.selected, circos.order) {
circos.order.vars <- rownames(circos.selected)[circos.order]
circos.ordered <-
circos.selected[match(rownames(circos.selected), circos.order.vars),
match(colnames(circos.selected), circos.order.vars)]
return(circos.ordered)
}
#' Perform a permanova signficance test
#'
#' @description
#' Perform a permanova significance testing using the adonis function (from
#' vegan) upon consensus classes, as returned from the get.block.centroids
#' method. Limited to first two components.
#'
#' @param consensus.summary Consensus summary as generated by
#' get.block.centroids().
#'
#' @return Measurement of p-value for separation of clusters.
#' @export
permanova.clusters <- function(consensus.summary) {
consensus.points <- data.frame(consensus.summary$comp1,
consensus.summary$comp2)
return(vegan::adonis(consensus.points ~ sample(consensus.summary$arrow.group),
method='euclidean'))
}