|
a |
|
b/OmicsFold/R/permutation.R |
|
|
1 |
.permute.data.labels <- function (lab) { |
|
|
2 |
return (sample(lab)) |
|
|
3 |
} |
|
|
4 |
|
|
|
5 |
.calculate.mode <- function(x) { |
|
|
6 |
uniqx <- unique(na.omit(x)) |
|
|
7 |
uniqx[which.max(tabulate(match(x, uniqx)))] |
|
|
8 |
} |
|
|
9 |
|
|
|
10 |
.calculate.anti.mode <- function(x) { |
|
|
11 |
uniqx <- unique(na.omit(x)) |
|
|
12 |
uniqx[which.min(tabulate(match(x, uniqx)))] |
|
|
13 |
} |
|
|
14 |
|
|
|
15 |
.find.permutation.extent <- function(permuted, original) { |
|
|
16 |
num.lo <- length(original[original == levels(original)[1]]) |
|
|
17 |
num.hi <- length(original[original == levels(original)[2]]) |
|
|
18 |
|
|
|
19 |
lo <- permuted[1:num.lo] |
|
|
20 |
hi <- permuted[num.lo+1:length(permuted)] |
|
|
21 |
|
|
|
22 |
lo.fac <- .calculate.mode(lo) |
|
|
23 |
hi.fac <- .calculate.anti.mode(lo) |
|
|
24 |
|
|
|
25 |
lo.match <- length(which(lo == lo.fac)) |
|
|
26 |
hi.match <- length(which(hi == hi.fac)) |
|
|
27 |
|
|
|
28 |
return ((lo.match + hi.match) / length(permuted)) |
|
|
29 |
} |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
#' Perform a re-fit for a DIABLO model after permuting labels |
|
|
33 |
#' |
|
|
34 |
#' @description |
|
|
35 |
#' Perform a full multi-omics model fitting and performance assessment after |
|
|
36 |
#' permuting the labels associated with the classes. This can take some time. |
|
|
37 |
#' This is useful when you want to assess whether a model is capable of |
|
|
38 |
#' overfitting the data it was given. |
|
|
39 |
#' |
|
|
40 |
#' @param data Object containing input data blocks. |
|
|
41 |
#' @param design DIABLO block relation design matrix. |
|
|
42 |
#' @param data.labels Unpermuted data class labels. |
|
|
43 |
#' @param test.keepX Array of values to test for sparse model training. |
|
|
44 |
#' |
|
|
45 |
#' @return Model performance balanced error rate. |
|
|
46 |
#' @export |
|
|
47 |
#' |
|
|
48 |
train.permuted.model <- function(data, design, data.labels, test.keepX) { |
|
|
49 |
permuted.data.labels <- .permute.data.labels(data.labels) |
|
|
50 |
print ("Permuted data labels: ") |
|
|
51 |
print (permuted.data.labels) |
|
|
52 |
|
|
|
53 |
print ("Evaluating error rate over 6 components") |
|
|
54 |
sgccda.res.permuted <- mixOmics::block.splsda(X = data, |
|
|
55 |
Y = permuted.data.labels, |
|
|
56 |
ncomp = 6, |
|
|
57 |
design = design) |
|
|
58 |
perf.diablo.permuted <- mixOmics::perf(sgccda.res.permuted, |
|
|
59 |
validation = 'Mfold', |
|
|
60 |
folds = 8, |
|
|
61 |
nrepeat = 50, |
|
|
62 |
cpus = 4, |
|
|
63 |
progressBar = TRUE) |
|
|
64 |
ncomp = perf.diablo.permuted$choice.ncomp$WeightedVote["Overall.BER", |
|
|
65 |
"centroids.dist"] |
|
|
66 |
print (paste("Optimal components: ", ncomp, sep="")) |
|
|
67 |
|
|
|
68 |
print ("Tuning variable penalization") |
|
|
69 |
tune.diablo.permuted <- mixOmics::tune.block.splsda(X = data, |
|
|
70 |
Y = permuted.data.labels, |
|
|
71 |
ncomp = ncomp, |
|
|
72 |
test.keepX = test.keepX, |
|
|
73 |
design = design, |
|
|
74 |
validation = 'Mfold', |
|
|
75 |
folds = 8, |
|
|
76 |
nrepeat = 2, |
|
|
77 |
cpus = 4, |
|
|
78 |
dist = "centroids.dist", |
|
|
79 |
progressBar = TRUE) |
|
|
80 |
list.keepX.permuted <- tune.diablo.permuted$choice.keepX |
|
|
81 |
print ("Optimal selection: ") |
|
|
82 |
print (list.keepX.permuted) |
|
|
83 |
|
|
|
84 |
print ("Evaluating model mfold error rate") |
|
|
85 |
sgccda.trained.permuted <- mixOmics::block.splsda(X = data, |
|
|
86 |
Y = permuted.data.labels, |
|
|
87 |
ncomp = ncomp, |
|
|
88 |
keepX = list.keepX.permuted, |
|
|
89 |
design = design) |
|
|
90 |
perf.diablo.permuted <- mixOmics::perf(sgccda.trained.permuted, |
|
|
91 |
validation = 'Mfold', |
|
|
92 |
M = 8, |
|
|
93 |
nrepeat = 200, |
|
|
94 |
dist = 'centroids.dist', |
|
|
95 |
cpus = 4, |
|
|
96 |
progressBar = TRUE) |
|
|
97 |
print ("MFold error rate: ") |
|
|
98 |
print (perf.diablo.permuted$WeightedVote.error.rate) |
|
|
99 |
|
|
|
100 |
return (perf.diablo.permuted$WeightedVote.error.rate) |
|
|
101 |
} |
|
|
102 |
|
|
|
103 |
|
|
|
104 |
#' Perform a fast model fit with permuted labels |
|
|
105 |
#' |
|
|
106 |
#' @description |
|
|
107 |
#' Perform a quick multi-omic model fit to data with permutated class labels. |
|
|
108 |
#' This does not perform the (slow) step of sparse variable or component number |
|
|
109 |
#' selection - so may be more approximate. |
|
|
110 |
#' |
|
|
111 |
#' @param data Object containing input data blocks. |
|
|
112 |
#' @param design DIABLO block relation design matrix. |
|
|
113 |
#' @param data.labels Unpermuted data class labels. |
|
|
114 |
#' @param ncomp Number of components to use in the model. |
|
|
115 |
#' @param list.keepX.permuted Set number of variable to select from each block. |
|
|
116 |
#' |
|
|
117 |
#' @return List containing a representation of the permuted labels, an estimate |
|
|
118 |
#' of the permutation degree (as stochastically permutation may scramble the |
|
|
119 |
#' labels more or less thoroughly) and the balanced error rate over one and two |
|
|
120 |
#' components. |
|
|
121 |
#' @export |
|
|
122 |
#' |
|
|
123 |
quick.permuted.fit <- function(data, design, data.labels, ncomp, |
|
|
124 |
list.keepX.permuted) { |
|
|
125 |
permuted.data.labels <- .permute.data.labels(data.labels) |
|
|
126 |
|
|
|
127 |
sgccda.trained.permuted <- mixOmics::block.splsda(X = data, |
|
|
128 |
Y = permuted.data.labels, |
|
|
129 |
ncomp = ncomp, |
|
|
130 |
keepX = list.keepX.permuted, |
|
|
131 |
design = design) |
|
|
132 |
perf.diablo.permuted <- mixOmics::perf(sgccda.trained.permuted, |
|
|
133 |
validation = 'Mfold', |
|
|
134 |
M = 8, |
|
|
135 |
nrepeat = 200, |
|
|
136 |
dist = 'centroids.dist', |
|
|
137 |
cpus = 4) |
|
|
138 |
|
|
|
139 |
error.rate.comp1 <- |
|
|
140 |
perf.diablo.permuted$WeightedVote.error.rate$centroids.dist[4,1] |
|
|
141 |
error.rate.comp2 <- |
|
|
142 |
perf.diablo.permuted$WeightedVote.error.rate$centroids.dist[4,2] |
|
|
143 |
|
|
|
144 |
return(list( |
|
|
145 |
"permuted.labels" = paste(as.character(permuted.data.labels), |
|
|
146 |
collapse = " "), |
|
|
147 |
"permutation.degree" = .find.permutation.extent(permuted.data.labels), |
|
|
148 |
"error.rate.comp1" = error.rate.comp1, |
|
|
149 |
"error.rate.comp2" = error.rate.comp2 |
|
|
150 |
)) |
|
|
151 |
} |