|
a |
|
b/main.py |
|
|
1 |
import numpy as np |
|
|
2 |
import pandas as pd |
|
|
3 |
from MultiOmiVAE import MultiOmiVAE |
|
|
4 |
from MethyOmiVAE import MethyOmiVAE |
|
|
5 |
from ExprOmiVAE import ExprOmiVAE |
|
|
6 |
from plot_sactter import plot_scatter |
|
|
7 |
from classification import classification |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
if __name__ == "__main__": |
|
|
11 |
input_path = 'data/OmiVAE/PANCAN/GDC-PANCAN_' |
|
|
12 |
|
|
|
13 |
expr_path = input_path + 'htseq_fpkm_' |
|
|
14 |
methy_path = input_path + 'methylation450_' |
|
|
15 |
|
|
|
16 |
# Loading data |
|
|
17 |
|
|
|
18 |
print('Loading gene expression data...') |
|
|
19 |
expr_df = pd.read_csv(expr_path + 'preprocessed_both.tsv', sep='\t', header=0, index_col=0) |
|
|
20 |
|
|
|
21 |
print('Loading DNA methylation data...') |
|
|
22 |
methy_chr_df_list = [] |
|
|
23 |
chr_id = list(range(1, 23)) |
|
|
24 |
chr_id.append('X') |
|
|
25 |
# Loop among different chromosomes |
|
|
26 |
for chrom in chr_id: |
|
|
27 |
print('Loading methylation data on chromosome ' + str(chrom) + '...') |
|
|
28 |
methy_chr_path = methy_path + 'preprocessed_both_chr' + str(chrom) + '.tsv' |
|
|
29 |
# methy_chr_df = pd.read_csv(methy_chr_path, sep='\t', header=0, index_col=0, dtype=all_cols_f32) |
|
|
30 |
methy_chr_df = pd.read_csv(methy_chr_path, sep='\t', header=0, index_col=0) |
|
|
31 |
methy_chr_df_list.append(methy_chr_df) |
|
|
32 |
|
|
|
33 |
e_num_1 = 50 |
|
|
34 |
e_num_2 = 200 |
|
|
35 |
l_dim = 128 |
|
|
36 |
|
|
|
37 |
# Example |
|
|
38 |
latent_code, train_acc, val_acc = MultiOmiVAE(input_path=input_path, expr_df=expr_df, |
|
|
39 |
methy_chr_df_list=methy_chr_df_list, p1_epoch_num=e_num_1, |
|
|
40 |
p2_epoch_num=e_num_2, latent_dim=l_dim, early_stopping=False) |