--- a +++ b/main.py @@ -0,0 +1,40 @@ +import numpy as np +import pandas as pd +from MultiOmiVAE import MultiOmiVAE +from MethyOmiVAE import MethyOmiVAE +from ExprOmiVAE import ExprOmiVAE +from plot_sactter import plot_scatter +from classification import classification + + +if __name__ == "__main__": + input_path = 'data/OmiVAE/PANCAN/GDC-PANCAN_' + + expr_path = input_path + 'htseq_fpkm_' + methy_path = input_path + 'methylation450_' + + # Loading data + + print('Loading gene expression data...') + expr_df = pd.read_csv(expr_path + 'preprocessed_both.tsv', sep='\t', header=0, index_col=0) + + print('Loading DNA methylation data...') + methy_chr_df_list = [] + chr_id = list(range(1, 23)) + chr_id.append('X') + # Loop among different chromosomes + for chrom in chr_id: + print('Loading methylation data on chromosome ' + str(chrom) + '...') + methy_chr_path = methy_path + 'preprocessed_both_chr' + str(chrom) + '.tsv' + # methy_chr_df = pd.read_csv(methy_chr_path, sep='\t', header=0, index_col=0, dtype=all_cols_f32) + methy_chr_df = pd.read_csv(methy_chr_path, sep='\t', header=0, index_col=0) + methy_chr_df_list.append(methy_chr_df) + + e_num_1 = 50 + e_num_2 = 200 + l_dim = 128 + + # Example + latent_code, train_acc, val_acc = MultiOmiVAE(input_path=input_path, expr_df=expr_df, + methy_chr_df_list=methy_chr_df_list, p1_epoch_num=e_num_1, + p2_epoch_num=e_num_2, latent_dim=l_dim, early_stopping=False) \ No newline at end of file