|
a |
|
b/README.md |
|
|
1 |
# OmiVAE |
|
|
2 |
***Please check the updated version of OmiVAE:*** |
|
|
3 |
[OmiEmbed](https://github.com/zhangxiaoyu11/OmiEmbed) |
|
|
4 |
|
|
|
5 |
[](https://zenodo.org/badge/latestdoi/201760678) |
|
|
6 |
[](https://github.com/zhangxiaoyu11/OmiVAE/blob/master/LICENSE) |
|
|
7 |
 |
|
|
8 |
[](https://github.com/zhangxiaoyu11/OmiVAE/stargazers) |
|
|
9 |
[](https://github.com/zhangxiaoyu11/OmiVAE/network/members) |
|
|
10 |
|
|
|
11 |
**OmiVAE: Integrated Multi-omics Analysis Using Variational Autoencoders** |
|
|
12 |
|
|
|
13 |
**Xiaoyu Zhang** (x.zhang18@imperial.ac.uk) |
|
|
14 |
|
|
|
15 |
Data Science Institute, Imperial College London |
|
|
16 |
|
|
|
17 |
## Introduction |
|
|
18 |
|
|
|
19 |
OmiVAE is an end-to-end deep learning model for low dimensional latent space extraction and multi-class classification on multi-omics datasets. |
|
|
20 |
|
|
|
21 |
Accepted by 2019 IEEE International Conference on Bioinformatics and Biomedicine (**IEEE BIBM 2019**) |
|
|
22 |
|
|
|
23 |
Paper Link: [arXiv](https://arxiv.org/abs/1908.06278) |
|
|
24 |
|
|
|
25 |
## Citation |
|
|
26 |
If you use this code for your research, please cite our paper. |
|
|
27 |
```bibtex |
|
|
28 |
@inproceedings{OmiVAE2019, |
|
|
29 |
title={Integrated Multi-omics Analysis Using Variational Autoencoders: Application to Pan-cancer Classification}, |
|
|
30 |
author={Zhang, Xiaoyu and Zhang, Jingqing and Sun, Kai and Yang, Xian and Dai, Chengliang and Guo, Yike}, |
|
|
31 |
booktitle={Bioinformatics and Biomedicine (BIBM), 2019 IEEE International Conference on}, |
|
|
32 |
year={2019} |
|
|
33 |
} |
|
|
34 |
``` |
|
|
35 |
|
|
|
36 |
## OmiEmbed |
|
|
37 |
***Please check the updated version of OmiVAE***: |
|
|
38 |
[OmiEmbed](https://github.com/zhangxiaoyu11/OmiEmbed) |
|
|
39 |
|
|
|
40 |
## License |
|
|
41 |
This source code is licensed under the [MIT](https://github.com/zhangxiaoyu11/OmiVAE/blob/master/LICENSE) license. |
|
|
42 |
|