--- a +++ b/ExprOmiVAE.py @@ -0,0 +1,476 @@ +import torch +import numpy as np +import pandas as pd +from sklearn.model_selection import train_test_split +from torch import nn, optim +from torch.utils.data import Dataset, DataLoader +from torch.nn import functional as F +from torch.utils.tensorboard import SummaryWriter +from earlystoping import Earlystopping +from sklearn import metrics + + +def ExprOmiVAE(input_path, expr_df, random_seed=42, no_cuda=False, model_parallelism=True, + separate_testing=True, batch_size=32, latent_dim=128, learning_rate=1e-3, p1_epoch_num=50, + p2_epoch_num=100, output_loss_record=True, classifier=True, early_stopping=True): + + torch.manual_seed(random_seed) + torch.cuda.manual_seed_all(random_seed) + + device = torch.device('cuda:0' if not no_cuda and torch.cuda.is_available() else 'cpu') + parallel = torch.cuda.device_count() > 1 and model_parallelism + + # Sample ID and order that has both gene expression and DNA methylation data + sample_id = np.loadtxt(input_path + 'both_samples.tsv', delimiter='\t', dtype='str') + + # Loading label + label = pd.read_csv(input_path + 'both_samples_tumour_type_digit.tsv', sep='\t', header=0, index_col=0) + class_num = len(label.tumour_type.unique()) + label_array = label['tumour_type'].values + + if separate_testing: + # Get testing set index and training set index + # Separate according to different tumour types + testset_ratio = 0.2 + valset_ratio = 0.5 + + train_index, test_index, train_label, test_label = train_test_split(sample_id, label_array, + test_size=testset_ratio, + random_state=random_seed, + stratify=label_array) + val_index, test_index, val_label, test_label = train_test_split(test_index, test_label, test_size=valset_ratio, + random_state=random_seed, stratify=test_label) + + expr_df_test = expr_df[test_index] + expr_df_val = expr_df[val_index] + expr_df_train = expr_df[train_index] + + # Get multi-omics dataset information + sample_num = len(sample_id) + expr_feature_num = expr_df.shape[0] + print('\nNumber of samples: {}'.format(sample_num)) + print('Number of gene expression features: {}'.format(expr_feature_num)) + if classifier: + print('Number of classes: {}'.format(class_num)) + + class ExprOmiDataset(Dataset): + def __init__(self, expr_df, labels): + self.expr_df = expr_df + self.labels = labels + + def __len__(self): + return self.expr_df.shape[1] + + def __getitem__(self, index): + expr_line = self.expr_df.iloc[:, index].values + expr_line_tensor = torch.Tensor(expr_line) + label = self.labels[index] + return [expr_line_tensor, label] + + # DataSets and DataLoaders + if separate_testing: + train_dataset = ExprOmiDataset(expr_df=expr_df_train, labels=train_label) + train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=6) + val_dataset = ExprOmiDataset(expr_df=expr_df_val, labels=val_label) + val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=6) + test_dataset = ExprOmiDataset(expr_df=expr_df_test, labels=test_label) + test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=6) + else: + train_dataset = ExprOmiDataset(expr_df=expr_df, labels=label_array) + train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=6) + full_dataset = ExprOmiDataset(expr_df=expr_df, labels=label_array) + full_loader = DataLoader(full_dataset, batch_size=batch_size, num_workers=6) + + # Setting dimensions + latent_space_dim = latent_dim + input_dim_expr = expr_feature_num + level_2_dim_expr = 4096 + level_3_dim_expr = 1024 + level_4_dim = 512 + classifier_1_dim = 128 + classifier_2_dim = 64 + classifier_out_dim = class_num + + class VAE(nn.Module): + def __init__(self): + super(VAE, self).__init__() + # ENCODER fc layers + # level 1 + # Expr input + self.e_fc1_expr = self.fc_layer(input_dim_expr, level_2_dim_expr) + + # Level 2 + self.e_fc2_expr = self.fc_layer(level_2_dim_expr, level_3_dim_expr) + # self.e_fc2_expr = self.fc_layer(level_2_dim_expr, level_3_dim_expr, dropout=True) + + # Level 3 + self.e_fc3 = self.fc_layer(level_3_dim_expr, level_4_dim) + # self.e_fc3 = self.fc_layer(level_3_dim_expr, level_4_dim, dropout=True) + + # Level 4 + self.e_fc4_mean = self.fc_layer(level_4_dim, latent_space_dim, activation=0) + self.e_fc4_log_var = self.fc_layer(level_4_dim, latent_space_dim, activation=0) + + # model parallelism + if parallel: + self.e_fc1_expr.to('cuda:0') + self.e_fc2_expr.to('cuda:0') + self.e_fc3.to('cuda:0') + self.e_fc4_mean.to('cuda:0') + self.e_fc4_log_var.to('cuda:0') + + # DECODER fc layers + # Level 4 + self.d_fc4 = self.fc_layer(latent_space_dim, level_4_dim) + + # Level 3 + self.d_fc3 = self.fc_layer(level_4_dim, level_3_dim_expr) + # self.d_fc3 = self.fc_layer(level_4_dim, level_3_dim_expr, dropout=True) + + # Level 2 + self.d_fc2_expr = self.fc_layer(level_3_dim_expr, level_2_dim_expr) + # self.d_fc2_expr = self.fc_layer(level_3_dim_expr, level_2_dim_expr, dropout=True) + + # level 1 + # Expr output + self.d_fc1_expr = self.fc_layer(level_2_dim_expr, input_dim_expr, activation=2) + + # model parallelism + if parallel: + self.d_fc4.to('cuda:1') + self.d_fc3.to('cuda:1') + self.d_fc2_expr.to('cuda:1') + self.d_fc1_expr.to('cuda:1') + + # CLASSIFIER fc layers + self.c_fc1 = self.fc_layer(latent_space_dim, classifier_1_dim) + self.c_fc2 = self.fc_layer(classifier_1_dim, classifier_2_dim) + # self.c_fc2 = self.fc_layer(classifier_1_dim, classifier_2_dim, dropout=True) + self.c_fc3 = self.fc_layer(classifier_2_dim, classifier_out_dim, activation=0) + + # model parallelism + if parallel: + self.c_fc1.to('cuda:1') + self.c_fc2.to('cuda:1') + self.c_fc3.to('cuda:1') + + # Activation - 0: no activation, 1: ReLU, 2: Sigmoid + def fc_layer(self, in_dim, out_dim, activation=1, dropout=False, dropout_p=0.5): + if activation == 0: + layer = nn.Sequential( + nn.Linear(in_dim, out_dim), + nn.BatchNorm1d(out_dim)) + elif activation == 2: + layer = nn.Sequential( + nn.Linear(in_dim, out_dim), + nn.BatchNorm1d(out_dim), + nn.Sigmoid()) + else: + if dropout: + layer = nn.Sequential( + nn.Linear(in_dim, out_dim), + nn.BatchNorm1d(out_dim), + nn.ReLU(), + nn.Dropout(p=dropout_p)) + else: + layer = nn.Sequential( + nn.Linear(in_dim, out_dim), + nn.BatchNorm1d(out_dim), + nn.ReLU()) + return layer + + def encode(self, x): + expr_level2_layer = self.e_fc1_expr(x) + + level_3_layer = self.e_fc2_expr(expr_level2_layer) + + level_4_layer = self.e_fc3(level_3_layer) + + latent_mean = self.e_fc4_mean(level_4_layer) + latent_log_var = self.e_fc4_log_var(level_4_layer) + + return latent_mean, latent_log_var + + def reparameterize(self, mean, log_var): + sigma = torch.exp(0.5 * log_var) + eps = torch.randn_like(sigma) + return mean + eps * sigma + + def decode(self, z): + level_4_layer = self.d_fc4(z) + + level_3_layer = self.d_fc3(level_4_layer) + + expr_level2_layer = self.d_fc2_expr(level_3_layer) + + recon_x = self.d_fc1_expr(expr_level2_layer) + + return recon_x + + def classifier(self, mean): + level_1_layer = self.c_fc1(mean) + level_2_layer = self.c_fc2(level_1_layer) + output_layer = self.c_fc3(level_2_layer) + return output_layer + + def forward(self, x): + mean, log_var = self.encode(x) + z = self.reparameterize(mean, log_var) + classifier_x = mean + if parallel: + z = z.to('cuda:1') + classifier_x = classifier_x.to('cuda:1') + recon_x = self.decode(z) + pred_y = self.classifier(classifier_x) + return z, recon_x, mean, log_var, pred_y + + # Instantiate VAE + if parallel: + vae_model = VAE() + else: + vae_model = VAE().to(device) + + # Early Stopping + if early_stopping: + early_stop_ob = Earlystopping() + + # Tensorboard writer + train_writer = SummaryWriter(log_dir='logs/train') + val_writer = SummaryWriter(log_dir='logs/val') + + # print the model information + # print('\nModel information:') + # print(vae_model) + total_params = sum(params.numel() for params in vae_model.parameters()) + print('Number of parameters: {}'.format(total_params)) + + optimizer = optim.Adam(vae_model.parameters(), lr=learning_rate) + + def expr_recon_loss(recon_x, x): + loss = F.binary_cross_entropy(recon_x, x, reduction='sum') + return loss + + def kl_loss(mean, log_var): + loss = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp()) + return loss + + def classifier_loss(pred_y, y): + loss = F.cross_entropy(pred_y, y, reduction='sum') + return loss + + # k_expr_recon = 1 + # k_kl = 1 + # k_class = 1 + + # loss record + loss_array = np.zeros(shape=(9, p1_epoch_num+p2_epoch_num+1)) + # performance metrics + metrics_array = np.zeros(4) + + def train(e_index, e_num, k_expr_recon, k_kl, k_c): + vae_model.train() + train_expr_recon = 0 + train_kl = 0 + train_classifier = 0 + train_correct_num = 0 + train_total_loss = 0 + for batch_index, sample in enumerate(train_loader): + data = sample[0] + y = sample[1] + data = data.to(device) + y = y.to(device) + optimizer.zero_grad() + _, recon_data, mean, log_var, pred_y = vae_model(data) + if parallel: + recon_data = recon_data.to('cuda:0') + pred_y = pred_y.to('cuda:0') + + expr_recon = expr_recon_loss(recon_data, data) + kl = kl_loss(mean, log_var) + class_loss = classifier_loss(pred_y, y) + loss = k_expr_recon * expr_recon + k_kl * kl + k_c * class_loss + + loss.backward() + + with torch.no_grad(): + pred_y_softmax = F.softmax(pred_y, dim=1) + _, predicted = torch.max(pred_y_softmax, 1) + correct = (predicted == y).sum().item() + + train_expr_recon += expr_recon.item() + train_kl += kl.item() + train_classifier += class_loss.item() + train_correct_num += correct + train_total_loss += loss.item() + + optimizer.step() + + # if batch_index % 15 == 0: + # print('Epoch {:3d}/{:3d} --- [{:5d}/{:5d}] ({:2d}%)\n' + # 'Expr Recon Loss: {:.2f} KL Loss: {:.2f} ' + # 'Classification Loss: {:.2f}\nACC: {:.2f}%'.format( + # e_index + 1, e_num, batch_index * len(data), len(train_dataset), + # round(100. * batch_index / len(train_loader)), + # expr_recon.item() / len(data), kl.item() / len(data), class_loss.item() / len(data), + # correct / len(data) * 100)) + + train_expr_recon_ave = train_expr_recon / len(train_dataset) + train_kl_ave = train_kl / len(train_dataset) + train_classifier_ave = train_classifier / len(train_dataset) + train_accuracy = train_correct_num / len(train_dataset) * 100 + train_total_loss_ave = train_total_loss / len(train_dataset) + + print('Epoch {:3d}/{:3d}\n' + 'Training\n' + 'Expr Recon Loss: {:.2f} KL Loss: {:.2f} ' + 'Classification Loss: {:.2f}\nACC: {:.2f}%'. + format(e_index + 1, e_num, train_expr_recon_ave, train_kl_ave, train_classifier_ave, train_accuracy)) + loss_array[0, e_index] = train_expr_recon_ave + loss_array[1, e_index] = train_kl_ave + loss_array[2, e_index] = train_classifier_ave + loss_array[3, e_index] = train_accuracy + + # TB + train_writer.add_scalar('Total loss', train_total_loss_ave, e_index) + train_writer.add_scalar('Expr recon loss', train_expr_recon_ave, e_index) + train_writer.add_scalar('KL loss', train_kl_ave, e_index) + train_writer.add_scalar('Classification loss', train_classifier_ave, e_index) + train_writer.add_scalar('Accuracy', train_accuracy, e_index) + + if separate_testing: + def val(e_index, get_metrics=False): + vae_model.eval() + val_expr_recon = 0 + val_kl = 0 + val_classifier = 0 + val_correct_num = 0 + val_total_loss = 0 + y_store = torch.tensor([0]) + predicted_store = torch.tensor([0]) + + with torch.no_grad(): + for batch_index, sample in enumerate(val_loader): + data = sample[0] + y = sample[1] + data = data.to(device) + y = y.to(device) + _, recon_data, mean, log_var, pred_y = vae_model(data) + if parallel: + recon_data = recon_data.to('cuda:0') + pred_y = pred_y.to('cuda:0') + + expr_recon = expr_recon_loss(recon_data, data) + kl = kl_loss(mean, log_var) + class_loss = classifier_loss(pred_y, y) + loss = expr_recon + kl + class_loss + + pred_y_softmax = F.softmax(pred_y, dim=1) + _, predicted = torch.max(pred_y_softmax, 1) + correct = (predicted == y).sum().item() + + y_store = torch.cat((y_store, y.cpu())) + predicted_store = torch.cat((predicted_store, predicted.cpu())) + + val_expr_recon += expr_recon.item() + val_kl += kl.item() + val_classifier += class_loss.item() + val_correct_num += correct + val_total_loss += loss.item() + + output_y = y_store[1:].numpy() + output_pred_y = predicted_store[1:].numpy() + + if get_metrics: + metrics_array[0] = metrics.accuracy_score(output_y, output_pred_y) + metrics_array[1] = metrics.precision_score(output_y, output_pred_y, average='weighted') + metrics_array[2] = metrics.recall_score(output_y, output_pred_y, average='weighted') + metrics_array[3] = metrics.f1_score(output_y, output_pred_y, average='weighted') + + val_expr_recon_ave = val_expr_recon / len(val_dataset) + val_kl_ave = val_kl / len(val_dataset) + val_classifier_ave = val_classifier / len(val_dataset) + val_accuracy = val_correct_num / len(val_dataset) * 100 + val_total_loss_ave = val_total_loss / len(val_dataset) + + print('Validation\n' + 'Expr Recon Loss: {:.2f} KL Loss: {:.2f} Classification Loss: {:.2f}' + '\nACC: {:.2f}%\n'. + format(val_expr_recon_ave, val_kl_ave, val_classifier_ave, val_accuracy)) + loss_array[4, e_index] = val_expr_recon_ave + loss_array[5, e_index] = val_kl_ave + loss_array[6, e_index] = val_classifier_ave + loss_array[7, e_index] = val_accuracy + + # TB + val_writer.add_scalar('Total loss', val_total_loss_ave, e_index) + val_writer.add_scalar('Expr recon loss', val_expr_recon_ave, e_index) + val_writer.add_scalar('KL loss', val_kl_ave, e_index) + val_writer.add_scalar('Classification loss', val_classifier_ave, e_index) + val_writer.add_scalar('Accuracy', val_accuracy, e_index) + + return val_accuracy, output_pred_y + + print('\nUNSUPERVISED PHASE\n') + # unsupervised phase + for epoch_index in range(p1_epoch_num): + train(e_index=epoch_index, e_num=p1_epoch_num+p2_epoch_num, k_expr_recon=1, k_kl=1, k_c=0) + if separate_testing: + _, out_pred_y = val(epoch_index) + + print('\nSUPERVISED PHASE\n') + # supervised phase + epoch_number = p1_epoch_num + for epoch_index in range(p1_epoch_num, p1_epoch_num+p2_epoch_num): + epoch_number += 1 + train(e_index=epoch_index, e_num=p1_epoch_num+p2_epoch_num, k_expr_recon=0, k_kl=0, k_c=1) + if separate_testing: + if epoch_index == p1_epoch_num+p2_epoch_num-1: + val_classification_acc, out_pred_y = val(epoch_index, get_metrics=True) + else: + val_classification_acc, out_pred_y = val(epoch_index) + if early_stopping: + early_stop_ob(vae_model, val_classification_acc) + if early_stop_ob.stop_now: + print('Early stopping\n') + break + + if early_stopping: + best_epoch = p1_epoch_num + early_stop_ob.best_epoch_num + loss_array[8, 0] = best_epoch + print('Load model of Epoch {:d}'.format(best_epoch)) + vae_model.load_state_dict(torch.load('../ssd/checkpoint.pt')) + _, out_pred_y = val(epoch_number, get_metrics=True) + + # Encode all of the data into the latent space + print('Encoding all the data into latent space...') + vae_model.eval() + with torch.no_grad(): + d_z_store = torch.zeros(1, latent_dim).to(device) + for i, sample in enumerate(full_loader): + d = sample[0] + d = d.to(device) + _, _, d_z, _, _ = vae_model(d) + d_z_store = torch.cat((d_z_store, d_z), 0) + all_data_z = d_z_store[1:] + all_data_z_np = all_data_z.cpu().numpy() + + # Output file + print('Preparing the output files... ') + input_path_name = input_path.split('/')[-1] + latent_space_path = 'results/' + input_path_name + str(latent_dim) + 'D_latent_space.tsv' + + all_data_z_df = pd.DataFrame(all_data_z_np, index=sample_id) + all_data_z_df.to_csv(latent_space_path, sep='\t') + + if separate_testing: + pred_y_path = 'results/' + input_path_name + str(latent_dim) + 'D_pred_y.tsv' + np.savetxt(pred_y_path, out_pred_y, delimiter='\t') + + metrics_record_path = 'results/' + input_path_name + str(latent_dim) + 'D_metrics.tsv' + np.savetxt(metrics_record_path, metrics_array, delimiter='\t') + + if output_loss_record: + loss_record_path = 'results/' + input_path_name + str(latent_dim) + 'D_loss_record.tsv' + np.savetxt(loss_record_path, loss_array, delimiter='\t') + + return all_data_z_df