"""
Training and testing for OmiEmbed
"""
import time
import warnings
from util import util
from params.train_test_params import TrainTestParams
from datasets import create_separate_dataloader
from models import create_model
from util.visualizer import Visualizer
if __name__ == "__main__":
warnings.filterwarnings('ignore')
full_start_time = time.time()
# Get parameters
param = TrainTestParams().parse()
if param.deterministic:
util.setup_seed(param.seed)
# Dataset related
full_dataloader, train_dataloader, val_dataloader, test_dataloader = create_separate_dataloader(param)
print('The size of training set is {}'.format(len(train_dataloader)))
# Get sample list for the dataset
param.sample_list = full_dataloader.get_sample_list()
# Get the dimension of input omics data
param.omics_dims = full_dataloader.get_omics_dims()
if param.downstream_task in ['classification', 'multitask', 'alltask']:
# Get the number of classes for the classification task
if param.class_num == 0:
param.class_num = full_dataloader.get_class_num()
if param.downstream_task != 'alltask':
print('The number of classes: {}'.format(param.class_num))
if param.downstream_task in ['regression', 'multitask', 'alltask']:
# Get the range of the target values
values_min = full_dataloader.get_values_min()
values_max = full_dataloader.get_values_max()
if param.regression_scale == 1:
param.regression_scale = values_max
print('The range of the target values is [{}, {}]'.format(values_min, values_max))
if param.downstream_task in ['survival', 'multitask', 'alltask']:
# Get the range of T
survival_T_min = full_dataloader.get_survival_T_min()
survival_T_max = full_dataloader.get_survival_T_max()
if param.survival_T_max == -1:
param.survival_T_max = survival_T_max
print('The range of survival T is [{}, {}]'.format(survival_T_min, survival_T_max))
# Model related
model = create_model(param) # Create a model given param.model and other parameters
model.setup(param) # Regular setup for the model: load and print networks, create schedulers
visualizer = Visualizer(param) # Create a visualizer to print results
# Start the epoch loop
visualizer.print_phase(model.phase)
for epoch in range(param.epoch_count, param.epoch_num + 1): # outer loop for different epochs
epoch_start_time = time.time() # Start time of this epoch
model.epoch = epoch
# TRAINING
model.set_train() # Set train mode for training
iter_load_start_time = time.time() # Start time of data loading for this iteration
output_dict, losses_dict, metrics_dict = model.init_log_dict() # Initialize the log dictionaries
if epoch == param.epoch_num_p1 + 1:
model.phase = 'p2' # Change to supervised phase
visualizer.print_phase(model.phase)
if epoch == param.epoch_num_p1 + param.epoch_num_p2 + 1:
model.phase = 'p3' # Change to supervised phase
visualizer.print_phase(model.phase)
# Start training loop
for i, data in enumerate(train_dataloader): # Inner loop for different iteration within one epoch
model.iter = i
dataset_size = len(train_dataloader)
actual_batch_size = len(data['index'])
iter_start_time = time.time() # Timer for computation per iteration
if i % param.print_freq == 0:
load_time = iter_start_time - iter_load_start_time # Data loading time for this iteration
model.set_input(data) # Unpack input data from the output dictionary of the dataloader
model.update() # Calculate losses, gradients and update network parameters
model.update_log_dict(output_dict, losses_dict, metrics_dict, actual_batch_size) # Update the log dictionaries
if i % param.print_freq == 0: # Print training losses and save logging information to the disk
comp_time = time.time() - iter_start_time # Computational time for this iteration
visualizer.print_train_log(epoch, i, losses_dict, metrics_dict, load_time, comp_time, param.batch_size, dataset_size)
iter_load_start_time = time.time()
# Model saving
if param.save_model:
if param.save_epoch_freq == -1: # Only save networks during last epoch
if epoch == param.epoch_num:
print('Saving the model at the end of epoch {:d}'.format(epoch))
model.save_networks(str(epoch))
elif epoch % param.save_epoch_freq == 0: # Save both the generator and the discriminator every <save_epoch_freq> epochs
print('Saving the model at the end of epoch {:d}'.format(epoch))
# model.save_networks('latest')
model.save_networks(str(epoch))
train_time = time.time() - epoch_start_time
current_lr = model.update_learning_rate() # update learning rates at the end of each epoch
visualizer.print_train_summary(epoch, losses_dict, output_dict, train_time, current_lr)
# TESTING
model.set_eval() # Set eval mode for testing
test_start_time = time.time() # Start time of testing
output_dict, losses_dict, metrics_dict = model.init_log_dict() # Initialize the log dictionaries
# Start testing loop
for i, data in enumerate(test_dataloader):
dataset_size = len(test_dataloader)
actual_batch_size = len(data['index'])
model.set_input(data) # Unpack input data from the output dictionary of the dataloader
model.test() # Run forward to get the output tensors
model.update_log_dict(output_dict, losses_dict, metrics_dict, actual_batch_size) # Update the log dictionaries
if i % param.print_freq == 0: # Print testing log
visualizer.print_test_log(epoch, i, losses_dict, metrics_dict, param.batch_size, dataset_size)
test_time = time.time() - test_start_time
visualizer.print_test_summary(epoch, losses_dict, output_dict, test_time)
if epoch == param.epoch_num:
visualizer.save_output_dict(output_dict)
full_time = time.time() - full_start_time
print('Full running time: {:.3f}s'.format(full_time))