import time
import argparse
import torch
import os
import models
from util import util
class BasicParams:
"""
This class define the console parameters
"""
def __init__(self):
"""
Reset the class. Indicates the class hasn't been initialized
"""
self.initialized = False
self.isTrain = True
self.isTest = True
def initialize(self, parser):
"""
Define the common console parameters
"""
parser.add_argument('--gpu_ids', type=str, default='0',
help='which GPU would like to use: e.g. 0 or 0,1, -1 for CPU')
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints',
help='models, settings and intermediate results are saved in folder in this directory')
parser.add_argument('--experiment_name', type=str, default='test',
help='name of the folder in the checkpoint directory')
# Dataset parameters
parser.add_argument('--omics_mode', type=str, default='a',
help='omics types would like to use in the model, options: [abc | ab | a | b | c]')
parser.add_argument('--data_root', type=str, default='./data',
help='path to input data')
parser.add_argument('--batch_size', type=int, default=32,
help='input data batch size')
parser.add_argument('--num_threads', default=0, type=int,
help='number of threads for loading data')
parser.add_argument('--set_pin_memory', action='store_true',
help='set pin_memory in the dataloader to increase data loading performance')
parser.add_argument('--not_stratified', action='store_true',
help='do not apply the stratified mode in train/test split if set true')
parser.add_argument('--use_sample_list', action='store_true',
help='provide a subset sample list of the dataset, store in the path data_root/sample_list.tsv, if False use all the samples')
parser.add_argument('--use_feature_lists', action='store_true',
help='provide feature lists of the input omics data, e.g. data_root/feature_list_A.tsv, if False use all the features')
parser.add_argument('--detect_na', action='store_true',
help='detect missing value markers during data loading, stay False can improve the loading performance')
parser.add_argument('--file_format', type=str, default='tsv',
help='file format of the omics data, options: [tsv | csv | hdf]')
# Model parameters
parser.add_argument('--model', type=str, default='vae_classifier',
help='chooses which model want to use, options: [vae_classifier | vae_regression | vae_survival | vae_multitask]')
parser.add_argument('--net_VAE', type=str, default='fc_sep',
help='specify the backbone of the VAE, default is the one dimensional CNN, options: [conv_1d | fc_sep | fc]')
parser.add_argument('--net_down', type=str, default='multi_FC_classifier',
help='specify the backbone of the downstream task network, default is the multi-layer FC classifier, options: [multi_FC_classifier | multi_FC_regression | multi_FC_survival | multi_FC_multitask]')
parser.add_argument('--norm_type', type=str, default='batch',
help='the type of normalization applied to the model, default to use batch normalization, options: [batch | instance | none ]')
parser.add_argument('--filter_num', type=int, default=8,
help='number of filters in the last convolution layer in the generator')
parser.add_argument('--conv_k_size', type=int, default=9,
help='the kernel size of convolution layer, default kernel size is 9, the kernel is one dimensional.')
parser.add_argument('--dropout_p', type=float, default=0.2,
help='probability of an element to be zeroed in a dropout layer, default is 0 which means no dropout.')
parser.add_argument('--leaky_slope', type=float, default=0.2,
help='the negative slope of the Leaky ReLU activation function')
parser.add_argument('--latent_space_dim', type=int, default=128,
help='the dimensionality of the latent space')
parser.add_argument('--seed', type=int, default=42,
help='random seed')
parser.add_argument('--init_type', type=str, default='normal',
help='choose the method of network initialization, options: [normal | xavier_normal | xavier_uniform | kaiming_normal | kaiming_uniform | orthogonal]')
parser.add_argument('--init_gain', type=float, default=0.02,
help='scaling factor for normal, xavier and orthogonal initialization methods')
# Loss parameters
parser.add_argument('--recon_loss', type=str, default='BCE',
help='chooses the reconstruction loss function, options: [BCE | MSE | L1]')
parser.add_argument('--reduction', type=str, default='mean',
help='chooses the reduction to apply to the loss function, options: [sum | mean]')
parser.add_argument('--k_kl', type=float, default=0.01,
help='weight for the kl loss')
parser.add_argument('--k_embed', type=float, default=0.001,
help='weight for the embedding loss')
# Other parameters
parser.add_argument('--deterministic', action='store_true',
help='make the model deterministic for reproduction if set true')
parser.add_argument('--detail', action='store_true',
help='print more detailed information if set true')
parser.add_argument('--epoch_to_load', type=str, default='latest',
help='the epoch number to load, set latest to load latest cached model')
parser.add_argument('--experiment_to_load', type=str, default='test',
help='the experiment to load')
self.initialized = True # set the initialized to True after we define the parameters of the project
return parser
def get_params(self):
"""
Initialize our parser with basic parameters once.
Add additional model-specific parameters.
"""
if not self.initialized: # check if this object has been initialized
# if not create a new parser object
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# use our method to initialize the parser with the predefined arguments
parser = self.initialize(parser)
# get the basic parameters
param, _ = parser.parse_known_args()
# modify model-related parser options
model_name = param.model
model_param_setter = models.get_param_setter(model_name)
parser = model_param_setter(parser, self.isTrain)
# save and return the parser
self.parser = parser
return parser.parse_args()
def print_params(self, param):
"""
Print welcome words and command line parameters.
Save the command line parameters in a txt file to the disk
"""
message = ''
message += '\nWelcome to OmiEmbed\nby Xiaoyu Zhang x.zhang18@imperial.ac.uk\n\n'
message += '-----------------------Running Parameters-----------------------\n'
for key, value in sorted(vars(param).items()):
comment = ''
default = self.parser.get_default(key)
if value != default:
comment = '\t[default: %s]' % str(default)
message += '{:>18}: {:<15}{}\n'.format(str(key), str(value), comment)
message += '----------------------------------------------------------------\n'
print(message)
# Save the running parameters setting in the disk
experiment_dir = os.path.join(param.checkpoints_dir, param.experiment_name)
util.mkdir(experiment_dir)
file_name = os.path.join(experiment_dir, 'cmd_parameters.txt')
with open(file_name, 'w') as param_file:
now = time.strftime('%c')
param_file.write('{:s}\n'.format(now))
param_file.write(message)
param_file.write('\n')
def parse(self):
"""
Parse the parameters of our project. Set up GPU device. Print the welcome words and list parameters in the console.
"""
param = self.get_params() # get the parameters to the object param
param.isTrain = self.isTrain
param.isTest = self.isTest
# Print welcome words and command line parameters
self.print_params(param)
# Set the internal parameters
# epoch_num: the total epoch number
if self.isTrain:
param.epoch_num = param.epoch_num_p1 + param.epoch_num_p2 + param.epoch_num_p3
# downstream_task: for the classification task a labels.tsv file is needed, for the regression task a values.tsv file is needed
if param.model == 'vae_classifier':
param.downstream_task = 'classification'
elif param.model == 'vae_regression':
param.downstream_task = 'regression'
elif param.model == 'vae_survival':
param.downstream_task = 'survival'
elif param.model == 'vae_multitask' or param.model == 'vae_multitask_gn':
param.downstream_task = 'multitask'
elif param.model == 'vae_alltask' or param.model == 'vae_alltask_gn':
param.downstream_task = 'alltask'
else:
raise NotImplementedError('Model name [%s] is not recognized' % param.model)
# add_channel: add one extra dimension of channel for the input data, used for convolution layer
# ch_separate: separate the DNA methylation matrix base on the chromosome
if param.net_VAE == 'conv_1d':
param.add_channel = True
param.ch_separate = False
elif param.net_VAE == 'fc_sep':
param.add_channel = False
param.ch_separate = True
elif param.net_VAE == 'fc':
param.add_channel = False
param.ch_separate = False
else:
raise NotImplementedError('VAE model name [%s] is not recognized' % param.net_VAE)
# omics_num: the number of omics types
param.omics_num = len(param.omics_mode)
# Set up GPU
str_gpu_ids = param.gpu_ids.split(',')
param.gpu_ids = []
for str_gpu_id in str_gpu_ids:
int_gpu_id = int(str_gpu_id)
if int_gpu_id >= 0:
param.gpu_ids.append(int_gpu_id)
if len(param.gpu_ids) > 0:
torch.cuda.set_device(param.gpu_ids[0])
self.param = param
return self.param