a b/train.py
1
"""
2
Separated training for OmiEmbed
3
"""
4
import time
5
import warnings
6
from util import util
7
from params.train_params import TrainParams
8
from datasets import create_single_dataloader
9
from models import create_model
10
from util.visualizer import Visualizer
11
12
13
if __name__ == "__main__":
14
    warnings.filterwarnings('ignore')
15
    # Get parameters
16
    param = TrainParams().parse()
17
    if param.deterministic:
18
        util.setup_seed(param.seed)
19
20
    # Dataset related
21
    dataloader, sample_list = create_single_dataloader(param, enable_drop_last=True)
22
    print('The size of training set is {}'.format(len(dataloader)))
23
    # Get the dimension of input omics data
24
    param.omics_dims = dataloader.get_omics_dims()
25
    if param.downstream_task in ['classification', 'multitask', 'alltask']:
26
        # Get the number of classes for the classification task
27
        if param.class_num == 0:
28
            param.class_num = dataloader.get_class_num()
29
        if param.downstream_task != 'alltask':
30
            print('The number of classes: {}'.format(param.class_num))
31
    if param.downstream_task in ['regression', 'multitask', 'alltask']:
32
        # Get the range of the target values
33
        values_min = dataloader.get_values_min()
34
        values_max = dataloader.get_values_max()
35
        if param.regression_scale == 1:
36
            param.regression_scale = values_max
37
        print('The range of the target values is [{}, {}]'.format(values_min, values_max))
38
    if param.downstream_task in ['survival', 'multitask', 'alltask']:
39
        # Get the range of T
40
        survival_T_min = dataloader.get_survival_T_min()
41
        survival_T_max = dataloader.get_survival_T_max()
42
        if param.survival_T_max == -1:
43
            param.survival_T_max = survival_T_max
44
        print('The range of survival T is [{}, {}]'.format(survival_T_min, survival_T_max))
45
46
    # Model related
47
    model = create_model(param)     # Create a model given param.model and other parameters
48
    model.setup(param)              # Regular setup for the model: load and print networks, create schedulers
49
    visualizer = Visualizer(param)  # Create a visualizer to print results
50
51
    # Start the epoch loop
52
    visualizer.print_phase(model.phase)
53
    for epoch in range(param.epoch_count, param.epoch_num + 1):     # outer loop for different epochs
54
        epoch_start_time = time.time()                              # Start time of this epoch
55
        model.epoch = epoch
56
        # TRAINING
57
        model.set_train()                                           # Set train mode for training
58
        iter_load_start_time = time.time()                          # Start time of data loading for this iteration
59
        output_dict, losses_dict, metrics_dict = model.init_log_dict()          # Initialize the log dictionaries
60
        if epoch == param.epoch_num_p1 + 1:
61
            model.phase = 'p2'                                      # Change to supervised phase
62
            visualizer.print_phase(model.phase)
63
        if epoch == param.epoch_num_p1 + param.epoch_num_p2 + 1:
64
            model.phase = 'p3'                                      # Change to supervised phase
65
            visualizer.print_phase(model.phase)
66
        if param.save_latent_space and epoch == param.epoch_num:
67
            latent_dict = model.init_latent_dict()
68
69
        # Start training loop
70
        for i, data in enumerate(dataloader):                 # Inner loop for different iteration within one epoch
71
            model.iter = i
72
            dataset_size = len(dataloader)
73
            actual_batch_size = len(data['index'])
74
            iter_start_time = time.time()                           # Timer for computation per iteration
75
            if i % param.print_freq == 0:
76
                load_time = iter_start_time - iter_load_start_time  # Data loading time for this iteration
77
            model.set_input(data)                                   # Unpack input data from the output dictionary of the dataloader
78
            model.update()                                          # Calculate losses, gradients and update network parameters
79
            model.update_log_dict(output_dict, losses_dict, metrics_dict, actual_batch_size)       # Update the log dictionaries
80
            if param.save_latent_space and epoch == param.epoch_num:
81
                latent_dict = model.update_latent_dict(latent_dict)  # Update the latent space array
82
            if i % param.print_freq == 0:                           # Print training losses and save logging information to the disk
83
                comp_time = time.time() - iter_start_time           # Computational time for this iteration
84
                visualizer.print_train_log(epoch, i, losses_dict, metrics_dict, load_time, comp_time, param.batch_size, dataset_size)
85
            iter_load_start_time = time.time()
86
87
        # Model saving
88
        if param.save_model:
89
            if param.save_epoch_freq == -1:  # Only save networks during last epoch
90
                if epoch == param.epoch_num:
91
                    print('Saving the model at the end of epoch {:d}'.format(epoch))
92
                    model.save_networks(str(epoch))
93
            elif epoch % param.save_epoch_freq == 0:                # Save both the generator and the discriminator every <save_epoch_freq> epochs
94
                print('Saving the model at the end of epoch {:d}'.format(epoch))
95
                # model.save_networks('latest')
96
                model.save_networks(str(epoch))
97
98
        train_time = time.time() - epoch_start_time
99
        current_lr = model.update_learning_rate()  # update learning rates at the end of each epoch
100
        visualizer.print_train_summary(epoch, losses_dict, output_dict, train_time, current_lr)
101
102
        if param.save_latent_space and epoch == param.epoch_num:
103
            visualizer.save_latent_space(latent_dict, sample_list)