|
a |
|
b/datasets/c_dataset.py |
|
|
1 |
import os.path |
|
|
2 |
from datasets import load_file |
|
|
3 |
from datasets import get_survival_y_true |
|
|
4 |
from datasets.basic_dataset import BasicDataset |
|
|
5 |
import numpy as np |
|
|
6 |
import pandas as pd |
|
|
7 |
import torch |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
class CDataset(BasicDataset): |
|
|
11 |
""" |
|
|
12 |
A dataset class for miRNA expression dataset. |
|
|
13 |
File should be prepared as '/path/to/data/C.tsv'. |
|
|
14 |
For each omics file, each columns should be each sample and each row should be each molecular feature. |
|
|
15 |
""" |
|
|
16 |
|
|
|
17 |
def __init__(self, param): |
|
|
18 |
""" |
|
|
19 |
Initialize this dataset class. |
|
|
20 |
""" |
|
|
21 |
BasicDataset.__init__(self, param) |
|
|
22 |
self.omics_dims = [] |
|
|
23 |
self.omics_dims.append(None) # First dimension is for gene expression (A) |
|
|
24 |
self.omics_dims.append(None) # Second dimension is for DNA methylation (B) |
|
|
25 |
|
|
|
26 |
# Load data for C |
|
|
27 |
C_df = load_file(param, 'C') |
|
|
28 |
# Get the sample list |
|
|
29 |
if param.use_sample_list: |
|
|
30 |
sample_list_path = os.path.join(param.data_root, 'sample_list.tsv') # get the path of sample list |
|
|
31 |
self.sample_list = np.loadtxt(sample_list_path, delimiter='\t', dtype='<U32') |
|
|
32 |
else: |
|
|
33 |
self.sample_list = C_df.columns |
|
|
34 |
# Get the feature list for C |
|
|
35 |
if param.use_feature_lists: |
|
|
36 |
feature_list_C_path = os.path.join(param.data_root, 'feature_list_C.tsv') # get the path of feature list |
|
|
37 |
feature_list_C = np.loadtxt(feature_list_C_path, delimiter='\t', dtype='<U32') |
|
|
38 |
else: |
|
|
39 |
feature_list_C = C_df.index |
|
|
40 |
C_df = C_df.loc[feature_list_C, self.sample_list] |
|
|
41 |
self.C_dim = C_df.shape[0] |
|
|
42 |
self.sample_num = C_df.shape[1] |
|
|
43 |
C_array = C_df.values |
|
|
44 |
if self.param.add_channel: |
|
|
45 |
# Add one dimension for the channel |
|
|
46 |
C_array = C_array[np.newaxis, :, :] |
|
|
47 |
self.C_tensor_all = torch.Tensor(C_array) |
|
|
48 |
self.omics_dims.append(self.C_dim) |
|
|
49 |
|
|
|
50 |
self.class_num = 0 |
|
|
51 |
if param.downstream_task == 'classification': |
|
|
52 |
# Load labels |
|
|
53 |
labels_path = os.path.join(param.data_root, 'labels.tsv') # get the path of the label |
|
|
54 |
labels_df = pd.read_csv(labels_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
55 |
self.labels_array = labels_df.iloc[:, -1].values |
|
|
56 |
# Get the class number |
|
|
57 |
self.class_num = len(labels_df.iloc[:, -1].unique()) |
|
|
58 |
elif param.downstream_task == 'regression': |
|
|
59 |
# Load target values |
|
|
60 |
values_path = os.path.join(param.data_root, 'values.tsv') # get the path of the target value |
|
|
61 |
values_df = pd.read_csv(values_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
62 |
self.values_array = values_df.iloc[:, -1].astype(float).values |
|
|
63 |
self.values_max = self.values_array.max() |
|
|
64 |
self.values_min = self.values_array.min() |
|
|
65 |
elif param.downstream_task == 'survival': |
|
|
66 |
# Load survival data |
|
|
67 |
survival_path = os.path.join(param.data_root, 'survival.tsv') # get the path of the survival data |
|
|
68 |
survival_df = pd.read_csv(survival_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
69 |
self.survival_T_array = survival_df.iloc[:, -2].astype(float).values |
|
|
70 |
self.survival_E_array = survival_df.iloc[:, -1].values |
|
|
71 |
self.survival_T_max = self.survival_T_array.max() |
|
|
72 |
self.survival_T_min = self.survival_T_array.min() |
|
|
73 |
if param.survival_loss == 'MTLR': |
|
|
74 |
self.y_true_tensor = get_survival_y_true(param, self.survival_T_array, self.survival_E_array) |
|
|
75 |
if param.stratify_label: |
|
|
76 |
labels_path = os.path.join(param.data_root, 'labels.tsv') # get the path of the label |
|
|
77 |
labels_df = pd.read_csv(labels_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
78 |
self.labels_array = labels_df.iloc[:, -1].values |
|
|
79 |
elif param.downstream_task == 'multitask': |
|
|
80 |
# Load labels |
|
|
81 |
labels_path = os.path.join(param.data_root, 'labels.tsv') # get the path of the label |
|
|
82 |
labels_df = pd.read_csv(labels_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
83 |
self.labels_array = labels_df.iloc[:, -1].values |
|
|
84 |
# Get the class number |
|
|
85 |
self.class_num = len(labels_df.iloc[:, -1].unique()) |
|
|
86 |
|
|
|
87 |
# Load target values |
|
|
88 |
values_path = os.path.join(param.data_root, 'values.tsv') # get the path of the target value |
|
|
89 |
values_df = pd.read_csv(values_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
90 |
self.values_array = values_df.iloc[:, -1].astype(float).values |
|
|
91 |
self.values_max = self.values_array.max() |
|
|
92 |
self.values_min = self.values_array.min() |
|
|
93 |
|
|
|
94 |
# Load survival data |
|
|
95 |
survival_path = os.path.join(param.data_root, 'survival.tsv') # get the path of the survival data |
|
|
96 |
survival_df = pd.read_csv(survival_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
97 |
self.survival_T_array = survival_df.iloc[:, -2].astype(float).values |
|
|
98 |
self.survival_E_array = survival_df.iloc[:, -1].values |
|
|
99 |
self.survival_T_max = self.survival_T_array.max() |
|
|
100 |
self.survival_T_min = self.survival_T_array.min() |
|
|
101 |
if param.survival_loss == 'MTLR': |
|
|
102 |
self.y_true_tensor = get_survival_y_true(param, self.survival_T_array, self.survival_E_array) |
|
|
103 |
elif param.downstream_task == 'alltask': |
|
|
104 |
# Load labels |
|
|
105 |
self.labels_array = [] |
|
|
106 |
self.class_num = [] |
|
|
107 |
for i in range(param.task_num-2): |
|
|
108 |
labels_path = os.path.join(param.data_root, 'labels_'+str(i+1)+'.tsv') # get the path of the label |
|
|
109 |
labels_df = pd.read_csv(labels_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
110 |
self.labels_array.append(labels_df.iloc[:, -1].values) |
|
|
111 |
# Get the class number |
|
|
112 |
self.class_num.append(len(labels_df.iloc[:, -1].unique())) |
|
|
113 |
|
|
|
114 |
# Load target values |
|
|
115 |
values_path = os.path.join(param.data_root, 'values.tsv') # get the path of the target value |
|
|
116 |
values_df = pd.read_csv(values_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
117 |
self.values_array = values_df.iloc[:, -1].astype(float).values |
|
|
118 |
self.values_max = self.values_array.max() |
|
|
119 |
self.values_min = self.values_array.min() |
|
|
120 |
|
|
|
121 |
# Load survival data |
|
|
122 |
survival_path = os.path.join(param.data_root, 'survival.tsv') # get the path of the survival data |
|
|
123 |
survival_df = pd.read_csv(survival_path, sep='\t', header=0, index_col=0).loc[self.sample_list, :] |
|
|
124 |
self.survival_T_array = survival_df.iloc[:, -2].astype(float).values |
|
|
125 |
self.survival_E_array = survival_df.iloc[:, -1].values |
|
|
126 |
self.survival_T_max = self.survival_T_array.max() |
|
|
127 |
self.survival_T_min = self.survival_T_array.min() |
|
|
128 |
if param.survival_loss == 'MTLR': |
|
|
129 |
self.y_true_tensor = get_survival_y_true(param, self.survival_T_array, self.survival_E_array) |
|
|
130 |
|
|
|
131 |
def __getitem__(self, index): |
|
|
132 |
""" |
|
|
133 |
Return a data point and its metadata information. |
|
|
134 |
|
|
|
135 |
Returns a dictionary that contains C_tensor, label and index |
|
|
136 |
input_omics (list) -- a list of input omics tensor |
|
|
137 |
label (int) -- label of the sample |
|
|
138 |
index (int) -- the index of this data point |
|
|
139 |
""" |
|
|
140 |
# Get the tensor of C |
|
|
141 |
if self.param.add_channel: |
|
|
142 |
C_tensor = self.C_tensor_all[:, :, index] |
|
|
143 |
else: |
|
|
144 |
C_tensor = self.C_tensor_all[:, index] |
|
|
145 |
|
|
|
146 |
# Get the tensor of A |
|
|
147 |
A_tensor = 0 |
|
|
148 |
|
|
|
149 |
# Get the tensor of B |
|
|
150 |
# Get the tensor of B |
|
|
151 |
if self.param.ch_separate: |
|
|
152 |
B_tensor = list(np.zeros(23)) |
|
|
153 |
else: |
|
|
154 |
B_tensor = 0 |
|
|
155 |
|
|
|
156 |
if self.param.downstream_task == 'classification': |
|
|
157 |
# Get label |
|
|
158 |
label = self.labels_array[index] |
|
|
159 |
return {'input_omics': [A_tensor, B_tensor, C_tensor], 'label': label, 'index': index} |
|
|
160 |
elif self.param.downstream_task == 'regression': |
|
|
161 |
# Get target value |
|
|
162 |
value = self.values_array[index] |
|
|
163 |
return {'input_omics': [A_tensor, B_tensor, C_tensor], 'value': value, 'index': index} |
|
|
164 |
elif self.param.downstream_task == 'survival': |
|
|
165 |
# Get survival T and E |
|
|
166 |
survival_T = self.survival_T_array[index] |
|
|
167 |
survival_E = self.survival_E_array[index] |
|
|
168 |
y_true = self.y_true_tensor[index, :] |
|
|
169 |
return {'input_omics': [A_tensor, B_tensor, C_tensor], 'survival_T': survival_T, 'survival_E': survival_E, 'y_true': y_true, 'index': index} |
|
|
170 |
elif self.param.downstream_task == 'multitask': |
|
|
171 |
# Get label |
|
|
172 |
label = self.labels_array[index] |
|
|
173 |
# Get target value |
|
|
174 |
value = self.values_array[index] |
|
|
175 |
# Get survival T and E |
|
|
176 |
survival_T = self.survival_T_array[index] |
|
|
177 |
survival_E = self.survival_E_array[index] |
|
|
178 |
y_true = self.y_true_tensor[index, :] |
|
|
179 |
return {'input_omics': [A_tensor, B_tensor, C_tensor], 'label': label, 'value': value, |
|
|
180 |
'survival_T': survival_T, 'survival_E': survival_E, 'y_true': y_true, 'index': index} |
|
|
181 |
elif self.param.downstream_task == 'alltask': |
|
|
182 |
# Get label |
|
|
183 |
label = [] |
|
|
184 |
for i in range(self.param.task_num - 2): |
|
|
185 |
label.append(self.labels_array[i][index]) |
|
|
186 |
# Get target value |
|
|
187 |
value = self.values_array[index] |
|
|
188 |
# Get survival T and E |
|
|
189 |
survival_T = self.survival_T_array[index] |
|
|
190 |
survival_E = self.survival_E_array[index] |
|
|
191 |
y_true = self.y_true_tensor[index, :] |
|
|
192 |
return {'input_omics': [A_tensor, B_tensor, C_tensor], 'label': label, 'value': value, |
|
|
193 |
'survival_T': survival_T, 'survival_E': survival_E, 'y_true': y_true, 'index': index} |
|
|
194 |
else: |
|
|
195 |
return {'input_omics': [A_tensor, B_tensor, C_tensor], 'index': index} |
|
|
196 |
|
|
|
197 |
def __len__(self): |
|
|
198 |
""" |
|
|
199 |
Return the number of data points in the dataset. |
|
|
200 |
""" |
|
|
201 |
return self.sample_num |
|
|
202 |
|