|
a |
|
b/README.md |
|
|
1 |
# OmiEmbed |
|
|
2 |
***Please also have a look at our brand new omics-to-omics DL freamwork 👀:*** |
|
|
3 |
[OmiTrans](https://github.com/zhangxiaoyu11/OmiTrans) |
|
|
4 |
|
|
|
5 |
[](https://zenodo.org/badge/latestdoi/334077812) |
|
|
6 |
[](https://www.codacy.com/gh/zhangxiaoyu11/OmiEmbed/dashboard?utm_source=github.com&utm_medium=referral&utm_content=zhangxiaoyu11/OmiEmbed&utm_campaign=Badge_Grade) |
|
|
7 |
[](https://github.com/zhangxiaoyu11/OmiEmbed/blob/main/LICENSE) |
|
|
8 |
 |
|
|
9 |
[](https://github.com/zhangxiaoyu11/OmiEmbed/stargazers) |
|
|
10 |
[](https://github.com/zhangxiaoyu11/OmiEmbed/network/members) |
|
|
11 |
|
|
|
12 |
**OmiEmbed: A Unified Multi-task Deep Learning Framework for Multi-omics Data** |
|
|
13 |
|
|
|
14 |
**Xiaoyu Zhang** (x.zhang18@imperial.ac.uk) |
|
|
15 |
|
|
|
16 |
Data Science Institute, Imperial College London |
|
|
17 |
|
|
|
18 |
## Introduction |
|
|
19 |
|
|
|
20 |
OmiEmbed is a unified framework for deep learning-based omics data analysis, which supports: |
|
|
21 |
|
|
|
22 |
1. Multi-omics integration |
|
|
23 |
2. Dimensionality reduction |
|
|
24 |
3. Omics embedding learning |
|
|
25 |
4. Tumour type classification |
|
|
26 |
5. Phenotypic feature reconstruction |
|
|
27 |
6. Survival prediction |
|
|
28 |
7. Multi-task learning for aforementioned tasks |
|
|
29 |
|
|
|
30 |
Paper Link: [https://doi.org/10.3390/cancers13123047](https://doi.org/10.3390/cancers13123047) |
|
|
31 |
|
|
|
32 |
## Getting Started |
|
|
33 |
|
|
|
34 |
### Prerequisites |
|
|
35 |
- CPU or NVIDIA GPU + CUDA CuDNN |
|
|
36 |
- [Python](https://www.python.org/downloads) 3.6+ |
|
|
37 |
- Python Package Manager |
|
|
38 |
- [Anaconda](https://docs.anaconda.com/anaconda/install) 3 (recommended) |
|
|
39 |
- or [pip](https://pip.pypa.io/en/stable/installing/) 21.0+ |
|
|
40 |
- Python Packages |
|
|
41 |
- [PyTorch](https://pytorch.org/get-started/locally) 1.2+ |
|
|
42 |
- TensorBoard 1.10+ |
|
|
43 |
- Tables 3.6+ |
|
|
44 |
- scikit-survival 0.6+ |
|
|
45 |
- prefetch-generator 1.0+ |
|
|
46 |
- [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) 2.7+ |
|
|
47 |
|
|
|
48 |
### Installation |
|
|
49 |
- Clone the repo |
|
|
50 |
```bash |
|
|
51 |
git clone https://github.com/zhangxiaoyu11/OmiEmbed.git |
|
|
52 |
cd OmiEmbed |
|
|
53 |
``` |
|
|
54 |
- Install the dependencies |
|
|
55 |
- For conda users |
|
|
56 |
```bash |
|
|
57 |
conda env create -f environment.yml |
|
|
58 |
conda activate omiembed |
|
|
59 |
``` |
|
|
60 |
- For pip users |
|
|
61 |
```bash |
|
|
62 |
pip install -r requirements.txt |
|
|
63 |
``` |
|
|
64 |
|
|
|
65 |
### Try it out |
|
|
66 |
- Train and test using the built-in sample dataset with the default settings |
|
|
67 |
```bash |
|
|
68 |
python train_test.py |
|
|
69 |
``` |
|
|
70 |
- Check the output files |
|
|
71 |
```bash |
|
|
72 |
cd checkpoints/test/ |
|
|
73 |
``` |
|
|
74 |
- Visualise the metrics and losses |
|
|
75 |
```bash |
|
|
76 |
tensorboard --logdir=tb_log --bind_all |
|
|
77 |
``` |
|
|
78 |
|
|
|
79 |
## Citation |
|
|
80 |
If you use this code in your research, please cite our paper. |
|
|
81 |
```bibtex |
|
|
82 |
@Article{OmiEmbed2021, |
|
|
83 |
AUTHOR = {Zhang, Xiaoyu and Xing, Yuting and Sun, Kai and Guo, Yike}, |
|
|
84 |
TITLE = {OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data}, |
|
|
85 |
JOURNAL = {Cancers}, |
|
|
86 |
VOLUME = {13}, |
|
|
87 |
YEAR = {2021}, |
|
|
88 |
NUMBER = {12}, |
|
|
89 |
ARTICLE-NUMBER = {3047}, |
|
|
90 |
ISSN = {2072-6694}, |
|
|
91 |
DOI = {10.3390/cancers13123047} |
|
|
92 |
} |
|
|
93 |
``` |
|
|
94 |
|
|
|
95 |
## OmiTrans |
|
|
96 |
***Please also have a look at our brand new omics-to-omics DL freamwork 👀:*** |
|
|
97 |
[OmiTrans](https://github.com/zhangxiaoyu11/OmiTrans) |
|
|
98 |
|
|
|
99 |
## License |
|
|
100 |
This source code is licensed under the [MIT](https://github.com/zhangxiaoyu11/OmiEmbed/blob/main/LICENSE) license. |