[4807fa]: / dl / affinitynet / graph_attention.py

Download this file

1276 lines (1113 with data), 59.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
import functools
import collections
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from ..models.transformer import *
if torch.cuda.is_available():
dtype = {'float': torch.cuda.FloatTensor, 'long': torch.cuda.LongTensor, 'byte': torch.cuda.ByteTensor}
else:
dtype = {'float': torch.FloatTensor, 'long': torch.LongTensor, 'byte': torch.ByteTensor}
def get_iterator(x, n, forced=False):
r"""If x is int, copy it to a list of length n
Cannot handle a special case when the input is an iterable and len(x) = n,
but we still need to copy it to a list of length n
"""
if forced:
return [x] * n
if not isinstance(x, collections.Iterable) or isinstance(x, str):
x = [x] * n
# Note: np.array, list are always iterable
if len(x) != n:
x = [x] * n
return x
def get_partial_model(model_part, model):
pretrained_state_dict = {k: v for k, v in model.state_dict().items() if k in model_part.state_dict()}
state_dict = model_part.state_dict()
state_dict.update(pretrained_state_dict)
model_part.load_state_dict(state_dict)
class DenseLinear(nn.Module):
r"""Multiple linear layers densely connected
Args:
in_dim: int, number of features
hidden_dim: iterable of int
nonlinearity: default nn.ReLU()
can be changed to other nonlinear activations
last_nonlinearity: if True, apply nonlinearity to the last output; default False
dense: if dense, concatenate all previous intermediate features to current input
forward_input: should the original input be concatenated to current input used when dense is True
if return_all is True and return_layers is None and forward_input is True,
then concatenate input with all hidden outputs as final output
return_all: if True return all layers
return_layers: selected layers to output; used only when return_all is True
bias: if True, use bias in nn.Linear()
Shape:
Attributes:
A series on weight and bias
Examples:
>>> m = DenseLinear(3, [3,4], return_all=True)
>>> x = Variable(torch.randn(4,3))
>>> m(x)
"""
def __init__(self, in_dim, hidden_dim, nonlinearity=nn.ReLU(), last_nonlinearity=False, dense=True,
forward_input=False, return_all=False, return_layers=None, bias=True):
super(DenseLinear, self).__init__()
num_layers = len(hidden_dim)
nonlinearity = get_iterator(nonlinearity, num_layers)
bias = get_iterator(bias, num_layers)
self.forward_input = forward_input
self.return_all = return_all
self.return_layers = return_layers
self.dense = dense
self.last_nonlinearity = last_nonlinearity
self.layers = nn.Sequential()
cnt_dim = in_dim if forward_input else 0
for i, h in enumerate(hidden_dim):
self.layers.add_module('linear'+str(i), nn.Linear(in_dim, h, bias[i]))
if i < num_layers-1 or last_nonlinearity:
self.layers.add_module('activation'+str(i), nonlinearity[i])
cnt_dim += h
in_dim = cnt_dim if dense else h
def forward(self, x):
if self.forward_input:
y = [x]
else:
y = []
out = x
for n, m in self.layers._modules.items():
out = m(out)
if n.startswith('activation'):
y.append(out)
if self.dense:
out = torch.cat(y, dim=-1)
if self.return_all:
if not self.last_nonlinearity: # add last output even if there is no nonlinearity
y.append(out)
if self.return_layers is not None:
return_layers = [i%len(y) for i in self.return_layers]
y = [h for i, h in enumerate(y) if i in return_layers]
return torch.cat(y, dim=-1)
else:
return out
class FineTuneModel(nn.Module):
r"""Finetune the last layer(s) (usually newly added) with a pretained model to learn a representation
Args:
pretained_model: nn.Module, pretrained module
new_layer: nn.Module, newly added layer
freeze_pretrained: if True, set requires_grad=False for pretrained_model parameters
Shape:
- Input: (N, *)
- Output:
Attributes:
All model parameters of pretrained_model and new_layer
Examples:
>>> m = nn.Linear(2,3)
>>> model = FineTuneModel(m, nn.Linear(3,2))
>>> x = Variable(torch.ones(1,2))
>>> print(m(x))
>>> print(model(x))
>>> print(FeatureExtractor(model, [0,1])(x))
"""
def __init__(self, pretrained_model, new_layer, freeze_pretrained=True):
super(FineTuneModel, self).__init__()
self.pretrained_model = pretrained_model
self.new_layer = new_layer
if freeze_pretrained:
for p in self.pretrained_model.parameters():
p.requires_grad = False
def forward(self, x):
return self.new_layer(self.pretrained_model(x))
class FeatureExtractor(nn.Module):
r"""Extract features from different layers of the model
Args:
model: nn.Module, the model
selected_layers: an iterable of int or 'string' (as module name), selected layers
Shape:
- Input: (N,*)
- Output: a list of Variables, depending on model and selected_layers
Attributes:
None learnable
Examples:
>>> m = nn.Sequential(nn.Linear(2,2), nn.Linear(2,3))
>>> m = FeatureExtractor(m, [0,1])
>>> x = Variable(torch.randn(1, 2))
>>> m(x)
"""
def __init__(self, model, selected_layers=None, return_list=False):
super(FeatureExtractor, self).__init__()
self.model = model
self.selected_layers = selected_layers
if self.selected_layers is None:
self.selected_layers = range(len(model._modules))
self.return_list = return_list
def set_selected_layers(self, selected_layers):
self.selected_layers = selected_layers
def forward(self, x):
out = []
for i, (name, m) in enumerate(self.model._modules.items()):
x = m(x)
if i in self.selected_layers or name in self.selected_layers:
out.append(x)
if self.return_list:
return out
else:
return torch.cat(out, dim=-1)
class WeightedFeature(nn.Module):
r"""Transform features into weighted features
Args:
num_features: int
reduce: if True, return weighted mean
Shape:
- Input: (N, *, num_features) where * means any number of dimensions
- Output: (N, *, num_features) if reduce is False (default) else (N, *)
Attributes:
weight: (num_features)
Examples::
>>> m = WeightedFeature(10)
>>> x = torch.autograd.Variable(torch.randn(5,10))
>>> out = m(x)
>>> print(out)
"""
def __init__(self, num_features, reduce=False, magnitude=None):
super(WeightedFeature, self).__init__()
self.reduce = reduce
self.weight = nn.Parameter(torch.empty(num_features))
# initialize with uniform weight
self.weight.data.fill_(1)
self.magnitude = 1 if magnitude is None else magnitude
def forward(self, x):
self.normalized_weight = torch.nn.functional.softmax(self.weight, dim=0)
# assert x.shape[-1] == self.normalized_weight.shape[0]
out = x * self.normalized_weight * self.magnitude
if self.reduce:
return out.sum(-1)
else:
return out
class WeightedView(nn.Module):
r"""Calculate weighted view
Args:
num_groups: int, number of groups (views)
reduce_dimension: bool, default False. If True, reduce dimension dim
dim: default -1. Only used when reduce_dimension is True
Shape:
- Input: if dim is None, (N, num_features*num_groups)
- Output: (N, num_features)
Attributes:
weight: (num_groups)
Examples:
>>> model = WeightedView(3)
>>> x = Variable(torch.randn(1, 6))
>>> print(model(x))
>>> model = WeightedView(3, True, 1)
>>> model(x.view(1,3,2))
"""
def __init__(self, num_groups, reduce_dimension=False, dim=-1):
super(WeightedView, self).__init__()
self.num_groups = num_groups
self.reduce_dimension = reduce_dimension
self.dim = dim
self.weight = nn.Parameter(torch.Tensor(num_groups))
self.weight.data.uniform_(-1./num_groups, 1./num_groups)
def forward(self, x):
self.normalized_weight = nn.functional.softmax(self.weight, dim=0)
if self.reduce_dimension:
assert x.size(self.dim) == self.num_groups
dim = self.dim if self.dim>=0 else self.dim+x.dim()
if dim == x.dim()-1:
out = (x * self.weight).sum(-1)
else:
# this is tricky for the case when x.dim()>3
out = torch.transpose((x.transpose(dim,-1)*self.normalized_weight).sum(-1), dim, -1)
else:
assert x.dim() == 2
num_features = x.size(-1) // self.num_groups
out = (x.view(-1, self.num_groups, num_features).transpose(1, -1)*self.normalized_weight).sum(-1)
return out
class AffinityKernel(nn.Module):
r"""Calculate new representation for each point based on its k-nearest-neighborhood
Args:
in_dim: int
hidden_dim: int
out_dim: int or None
not used if interaction_only is True
interaction_only: if True, not use out_dim at all
pooling: 'average' or 'max', use AveragePooling or MaxPooling for the neighborhood
k, graph, feature_subset are the same with GraphAttentionLayer,
except that now we implicitly set out_indices=None (output will have shape (N, *))
Shape:
- Input: (N, in_dim)
- Output: (N, out_dim)
Attributes:
w: ((2*in_dim), hidden_dim)
w2: ((in_dim+hidden_dim), out_dim), if interaction_only is True, then parameters w2 is None
Examples:
>>> m = AffinityKernel(5, 10, 15)
>>> x = Variable(torch.randn(10,5))
>>> m(x)
"""
def __init__(self, in_dim, hidden_dim, out_dim, k=None, graph=None, feature_subset=None,
nonlinearity_1=nn.Hardtanh(), nonlinearity_2=None, interaction_only=False,
pooling='average', reset_graph_every_forward=False, out_indices=None):
super(AffinityKernel, self).__init__()
self.k = k
self.graph = graph
self.cal_graph = True if self.graph is None else False
self.feature_subset = feature_subset
self.nonlinearity_1 = nonlinearity_1
self.nonlinearity_2 = nonlinearity_2
self.pooling = pooling
self.reset_graph_every_forward = reset_graph_every_forward
self.out_indices = out_indices
assert self.pooling=='average' or self.pooling=='max'
self.w = nn.Parameter(torch.Tensor(hidden_dim, 2*in_dim))
std = 1./np.sqrt(self.w.size(1))
self.w.data.uniform_(-std, std)
self.w2 = None
if not interaction_only:
assert isinstance(out_dim, int)
self.w2 = nn.Parameter(torch.Tensor(out_dim, in_dim+hidden_dim))
std = 1./np.sqrt(self.w2.size(1))
self.w2.data.uniform_(-std, std)
def reset_graph(self, graph=None):
self.graph = graph
self.cal_graph = True if self.graph is None else False
def reset_out_indices(self, out_indices=None):
self.out_indices = out_indices
def forward(self, x):
N, in_dim = x.size()
out = Variable(torch.zeros(N, self.w.size(0)).type(dtype['float']))
k = self.k if isinstance(self.k, int) and self.k<x.size(0) else x.size(0)
# Had not check this carefully
if self.reset_graph_every_forward:
self.reset_graph()
self.reset_out_indices()
if self.cal_graph: # probably redudant attribute; should only self.graph
if self.feature_subset is None:
feature_subset = dtype['long'](range(x.size(1)))
else:
feature_subset = self.feature_subset
d = torch.norm(x[:,feature_subset] - x[:,feature_subset].unsqueeze(1), dim=-1)
_, self.graph = torch.topk(d, k, dim=-1, largest=False)
for i in range(N):
neighbor_idx = self.graph[i][:k]
neighbor_mat = torch.cat([x[neighbor_idx], x[i,None]*Variable(torch.ones(len(neighbor_idx), 1).type(
dtype['float']))], dim=1)
h = nn.functional.linear(neighbor_mat, self.w)
if self.nonlinearity_1 is not None:
h = self.nonlinearity_1(h)
if self.pooling == 'average':
out[i] = h.mean(dim=0)
elif self.pooling == 'max':
# torch.max() returns a tuple
out[i] = h.max(dim=0)[0]
if self.w2 is not None:
out = nn.functional.linear(torch.cat([out, x], dim=-1), self.w2)
if self.nonlinearity_2 is not None:
out = self.nonlinearity_2(out)
out_indices = range(N) if self.out_indices is None else self.out_indices
return out[out_indices]
class AffinityNet(nn.Module):
r"""Multiple AffinityKernel layers
Same interface, except that the input should be iterable when appropriate and with a new argument:
return_all
Args:
return_all: if true, return concatenated features from all AffinityKernel Layers
add_global_feature: if true, add global features at the last of the output
only used when return_all is true
k_avg: when performing global pooling on the last layer, how many neighbors should we use for pooling
if k_avg is None, then use all nodes for global pooling. Otherwise, it is "local" pooling
global_pooling: 'average' or 'max' pooling
pool_last_layer_only: if True, only pool last layer as global feature,
otherwise pool all previous concacted output (and input if forward_input is true)
only used when return_all is True
forward_input: if True, add input in the beginning of the output
only used when return_all is True
dense: if True, feed all previous input and output as current input
inspired by DenseNet
in_dim: int
hidden_dim: iterable of int
out_dim: iterable of int;
if initialized int or None, then transform it to iterable of length hidden_dim
k: iterable of int; process it similar to out_dim
use_initial_graph: if True, calculate graph from input once use it for subsequent layers
reset_graph_every_forward: if True, reset graph, out_indices, k_avg in the beginning of every forward
out_indices: default None, output.size(0)==x.size(0)
if not None, output.size(0)==len(out_indices)
k_avg_graph: either 'single' or 'mix';
if 'single', use the provided graph only for pooling;
if 'mix', append calculated graph based on current features to the provided graph
in case the provided graph has a node degree less than k_avg
only used when return_all, add_global_feature, k_avg < x.size(0) are all True, and
the provided graph is not a torch.LongTensor or Variable
graph, non_linearity_1, non_linearity_2, feature_subset, interaction_only, pooling,
are all the same as those in AffinityKernel except that they will be iterables
Shape:
- Input: (N, *, in_dim)
- Out: (N, ?) ? to be determined by hidden_dim, out_dim and return_all
Attributes:
a list of parameters of AffinityKernel
Examples:
>>> m = AffinityNet(5, [10,3,5], [7,3,4], return_all=True)
>>> x = Variable(torch.randn(1,5))
>>> m(x)
"""
def __init__(self, in_dim, hidden_dim, out_dim, k=None, graph=None, feature_subset=None,
nonlinearity_1=nn.Hardtanh(), nonlinearity_2=None, interaction_only=False,
pooling='average', return_all=False, add_global_feature=True, k_avg=None,
global_pooling='max', pool_last_layer_only=True,
forward_input=True, dense=True, use_initial_graph=True, reset_graph_every_forward=False,
out_indices=None, k_avg_graph='single'):
super(AffinityNet, self).__init__()
self.return_all = return_all
self.add_global_feature = add_global_feature
self.global_pooling = global_pooling
self.pool_last_layer_only = pool_last_layer_only
self.k_avg = k_avg
self.forward_input = forward_input
self.dense = dense
self.use_initial_graph = use_initial_graph
self.reset_graph_every_forward = reset_graph_every_forward
self.out_indices = out_indices
self.k_avg_graph = k_avg_graph
assert self.global_pooling=='average' or self.global_pooling=='max'
assert self.k_avg_graph=='single' or self.k_avg_graph=='mix'
num_layers = len(hidden_dim)
self.num_layers = num_layers
out_dim = get_iterator(out_dim, num_layers)
k = get_iterator(k, num_layers)
graph = get_iterator(graph, num_layers)
self.graph = graph
feature_subset = get_iterator(feature_subset, num_layers) # should be None almost all the time
nonlinearity_1 = get_iterator(nonlinearity_1, num_layers)
nonlinearity_2 = get_iterator(nonlinearity_2, num_layers)
interaction_only = get_iterator(interaction_only, num_layers)
pooling = get_iterator(pooling, num_layers)
self.features = nn.ModuleList()
for i in range(num_layers):
self.features.append(
AffinityKernel(in_dim=in_dim, hidden_dim=hidden_dim[i], out_dim=out_dim[i],
k=k[i], graph=graph[i], feature_subset=feature_subset[i],
nonlinearity_1=nonlinearity_1[i], nonlinearity_2=nonlinearity_2[i],
interaction_only=interaction_only[i], pooling=pooling[i],
reset_graph_every_forward=False, out_indices=None))
new_dim = hidden_dim[i] if interaction_only[i] else out_dim[i]
if self.dense:
if i == 0 and not self.forward_input:
in_dim = new_dim
else:
in_dim += new_dim
else:
in_dim = new_dim
def reset_graph(self, graph=None):
graph = get_iterator(graph, self.num_layers)
for i in range(self.num_layers):
getattr(self.features, str(i)).reset_graph(graph[i])
self.graph = graph
def reset_k_avg(self, k_avg=None):
self.k_avg = k_avg
def reset_out_indices(self, out_indices=None):
self.out_indices = out_indices
# all previous layers out_indices is None
# could be wrong; Did not check carefully
for i in range(self.num_layers):
getattr(self.features, str(i)).reset_out_indices()
def forward(self, x):
N = x.size(0)
# this condition might be buggy
if self.reset_graph_every_forward:
self.reset_graph()
self.reset_k_avg()
self.reset_out_indices()
if self.graph[0] is None and self.use_initial_graph:
d = torch.norm(x-x[:,None], dim=-1)
_, graph = d.sort()
self.reset_graph(graph)
if self.forward_input:
y = [x]
else:
y = []
out = x
for f in self.features:
out = f(out)
y.append(out)
if self.dense:
out = torch.cat(y, -1)
# Very tricky; still not clear if I have done right
out_indices = range(N) if self.out_indices is None else self.out_indices
if self.return_all:
if self.add_global_feature:
pool_feature = y[-1] if self.pool_last_layer_only else out
dim_pool = 0
if isinstance(self.k_avg, int) and self.k_avg < N:
if self.graph[-1] is None:
d = torch.norm(x-x[:,None], dim=-1)
_, graph = d.sort()
else:
# when graph is given or set
graph = self.graph[-1]
assert len(graph) == N
# handling the case when graph is a list of torch.LongTensor
# the size of neighborhood of each node may vary
if not isinstance(graph, (dtype['long'], Variable)):
# save some computation if graph is already a torch.LongTensor or Variable
if self.k_avg_graph == 'single':
graph = torch.stack([dtype['long']([g[i%len(g)] for i in range(N)])
for g in graph], dim=0)
elif self.k_avg_graph == 'mix': # very tricky here; spent quite some time debugging
d = torch.norm(x-x[:,None], dim=-1)
_, graph2 = d.sort()
graph = torch.stack([torch.cat(
[dtype['long'](g), dtype['long'](
[i for i in graph2[j].data if i not in g])])
for j, g in enumerate(graph)], dim=0)
pool_feature = (pool_feature[graph[:,:self.k_avg].contiguous().view(-1)].
contiguous().view(N, self.k_avg, -1))
dim_pool=1
if self.global_pooling == 'average':
global_feature = pool_feature.mean(dim=dim_pool)
elif self.global_pooling == 'max':
# torch.max() return a tuple
global_feature = pool_feature.max(dim=dim_pool)[0]
if dim_pool == 0:
global_feature = global_feature * Variable(torch.ones(x.size(0),1).type(dtype['float']))
y.append(global_feature)
return torch.cat(y, -1)[out_indices]
else:
return y[-1][out_indices]
class StackedAffinityNet(nn.Module):
r"""Stack multiple simple AffinityNet layers with bottleneck layers in the middle
enable concatenating the output of intermediate output as output
For simplification, each AffinityNet unit have the same hidden_dim and out_dim
Args:
L: number of layers within each AffinityNet unit
max_dim: the maximum dimension produced by bottleneck layer, can be an iterable
forward_input_global: if True, add original input to the head of output
only used when return_all_global is true
return_all_global: if True, return all intermediate features (and input if forward_input_global is True)
dense_global: if True, the output of previous bottleneck layers (extracted features) with be concatenated
with current input
set_bottleneck_dim: if True, every bottleneck layer will be determined by max_dim only
return_layers: If not None, then only output of certain bottleneck layers
only used when return_all_global is True
Very buggy when interact with forward_global_input
hierarchical_pooling: if True, set k_avg = round(np.exp(np.log(N)/num_blocks))
where N = x.size(0), num_blocks = len(hidden_dim)
Shape:
Attributes:
Examples:
>>> m = StackedAffinityNet(2, [2,3], [2,3], 3)
>>> x = Variable(torch.randn(5,2))
>>> m(x)
"""
def __init__(self, in_dim, hidden_dim, out_dim, L, k=None, graph=None, feature_subset=None,
nonlinearity_1=nn.Hardtanh(), nonlinearity_2=None, interaction_only=False,
pooling='average', return_all=True, add_global_feature=True, k_avg=None,
global_pooling='max', pool_last_layer_only=True,
forward_input=True, dense=True, max_dim=10, set_bottleneck_dim=True, forward_input_global=False,
dense_global=True, return_all_global=True, return_layers=None, use_initial_graph=True,
hierarchical_pooling=True, reset_graph_every_forward=False,
out_indices=None, k_avg_graph='single'):
super(StackedAffinityNet, self).__init__()
assert isinstance(hidden_dim, collections.Iterable)
num_blocks = len(hidden_dim)
self.num_blocks = num_blocks
out_dim = get_iterator(out_dim, num_blocks)
k = get_iterator(k, num_blocks)
graph = get_iterator(graph, num_blocks)
self.graph = graph
feature_subset = get_iterator(feature_subset, num_blocks) # should be None almost all the time
nonlinearity_1 = get_iterator(nonlinearity_1, num_blocks)
nonlinearity_2 = get_iterator(nonlinearity_2, num_blocks)
interaction_only = get_iterator(interaction_only, num_blocks)
pooling = get_iterator(pooling, num_blocks)
return_all = get_iterator(return_all, num_blocks)
add_global_feature = get_iterator(add_global_feature, num_blocks)
k_avg = get_iterator(k_avg, num_blocks)
self.k_avg = k_avg
global_pooling = get_iterator(global_pooling, num_blocks)
pool_last_layer_only = get_iterator(pool_last_layer_only, num_blocks)
forward_input = get_iterator(forward_input, num_blocks)
dense = get_iterator(dense, num_blocks)
max_dim = get_iterator(max_dim, num_blocks)
self.forward_input_global = forward_input_global
self.dense_global = dense_global
self.return_all_global = return_all_global
self.return_layers = return_layers
self.use_initial_graph = use_initial_graph
self.hierarchical_pooling = hierarchical_pooling
self.reset_graph_every_forward = reset_graph_every_forward
self.out_indices = out_indices
self.blocks = nn.ModuleList()
dim_sum = 0
for i in range(num_blocks):
self.blocks.append(
AffinityNet(in_dim=in_dim, hidden_dim=[hidden_dim[i]]*L, out_dim=out_dim[i], k=k[i],
graph=graph[i], feature_subset=feature_subset[i], nonlinearity_1=nonlinearity_1[i],
nonlinearity_2=nonlinearity_2[i], interaction_only=interaction_only[i],
pooling=pooling[i], return_all=return_all[i],
add_global_feature=add_global_feature[i], k_avg=k_avg[i],
global_pooling=global_pooling[i], pool_last_layer_only=pool_last_layer_only[i],
forward_input=forward_input[i], dense=dense[i], use_initial_graph=use_initial_graph,
reset_graph_every_forward=False, out_indices=None, k_avg_graph=k_avg_graph)
)
if return_all[i]:
new_dim = hidden_dim[i]*L if interaction_only[i] else out_dim[i]*L
if forward_input[i]:
new_dim += in_dim
if add_global_feature[i]:
if pool_last_layer_only:
new_dim += hidden_dim[i] if interaction_only[i] else out_dim[i]
else:
new_dim *= 2
else:
new_dim = hidden_dim[i] if interaction_only[i] else out_dim[i]
if dense_global:
new_dim += dim_sum
in_dim = max_dim[i] if set_bottleneck_dim else min(new_dim, max_dim[i])
# use linear layer or AffinityNet or AffinityKernel?
self.blocks.add_module('bottleneck'+str(i),
nn.Sequential(
nn.Linear(new_dim, in_dim),
nonlinearity_1[i]
))
dim_sum += in_dim
def reset_graph(self, graph=None):
# could be buggy here
# assume every block consists of exactly two layers: an AffinityNet and and a bottleneck layer
graph = get_iterator(graph, self.num_blocks)
for i in range(self.num_blocks):
getattr(self.blocks, str(i*2)).reset_graph(graph[i])
self.graph = graph
def reset_k_avg(self, k_avg=None):
# similar to reset_graph
# could be buggy here
# assume every block consists of exactly two layers: an AffinityNet and and a bottleneck layer
k_avg = get_iterator(k_avg, self.num_blocks)
for i in range(self.num_blocks):
getattr(self.blocks, str(i*2)).reset_k_avg(k_avg[i])
self.k_avg = k_avg
def reset_out_indices(self, out_indices=None):
self.out_indices = out_indices
# Very Very buggy here; hadn't check it carefully
# out_indices should be None util the last layer
for i in range(self.num_blocks):
getattr(self.blocks, str(i*2)).reset_out_indices()
def forward(self, x):
if self.reset_graph_every_forward:
self.reset_graph()
self.reset_k_avg()
self.reset_out_indices()
if self.graph[0] is None and self.use_initial_graph:
d = torch.norm(x-x[:,None], dim=-1)
_, graph = d.sort()
self.reset_graph(graph)
if self.k_avg[0] is None and self.hierarchical_pooling:
k = int(round(np.exp(np.log(x.size(0))/self.num_blocks)))
ks = [k]
for i in range(self.num_blocks-1):
if i == self.num_blocks-2:
ks.append(x.size(0)) # pool all points in last layer
else:
ks.append(ks[-1]*k)
self.reset_k_avg(ks)
y = []
out = x
for name, module in self.blocks._modules.items():
if name.startswith('bottleneck') and self.dense_global:
out = torch.cat(y+[out], -1)
out = module(out)
if name.startswith('bottleneck'):
y.append(out)
# this is very buggy; I had been debugging this for a long time
# still not clear if I get it correctly
out_indices = range(x.size(0)) if self.out_indices is None else self.out_indices
if self.return_all_global:
if self.forward_input_global:
y = [x] + y
if isinstance(self.return_layers, collections.Iterable):
y = [h for i, h in enumerate(y) if i in self.return_layers]
return torch.cat(y, -1)[out_indices]
else:
return y[-1][out_indices]
class GraphAttentionLayer(nn.Module):
r"""Attention layer
Args:
in_dim: int, dimension of input
out_dim: int, dimension of output
out_indices: torch.LongTensor, the indices of nodes whose representations are
to be computed
Default None, calculate all node representations
If not None, need to reset it every time model is run
feature_subset: torch.LongTensor. Default None, use all features
kernel: 'affine' (default), use affine function to calculate attention
'gaussian', use weighted Gaussian kernel to calculate attention
k: int, number of nearest-neighbors used for calculate node representation
Default None, use all nodes
graph: a list of torch.LongTensor, corresponding to the nearest neighbors of nodes
whose representations are to be computed
Make sure graph and out_indices are aligned properly
use_previous_graph: only used when graph is None
if True, to calculate graph use input
otherwise, use newly transformed output
nonlinearity_1: nn.Module, non-linear activations followed by linear layer
nonlinearity_2: nn.Module, non-linear activations followed after attention operation
Shape:
- Input: (N, in_dim) graph node representations
- Output: (N, out_dim) if out_indices is None
else (len(out_indices), out_dim)
Attributes:
weight: (out_dim, in_dim)
a: out_dim if kernel is 'gaussian'
out_dim*2 if kernel is 'affine'
Examples:
>>> m = GraphAttentionLayer(2,2,feature_subset=torch.LongTensor([0,1]),
graph=torch.LongTensor([[0,5,1], [3,4,6]]), out_indices=[0,1],
kernel='gaussian', nonlinearity_1=None, nonlinearity_2=None)
>>> x = Variable(torch.randn(10,3))
>>> m(x)
"""
def __init__(self, in_dim, out_dim, k=None, graph=None, out_indices=None,
feature_subset=None, kernel='affine', nonlinearity_1=nn.Hardtanh(),
nonlinearity_2=None, use_previous_graph=True, reset_graph_every_forward=False,
no_feature_transformation=False, rescale=True, layer_norm=False, layer_magnitude=100,
key_dim=None, feature_selection_only=False):
super(GraphAttentionLayer, self).__init__()
self.in_dim = in_dim
self.graph = graph
if graph is None:
self.cal_graph = True
else:
self.cal_graph = False
self.use_previous_graph = use_previous_graph
self.reset_graph_every_forward = reset_graph_every_forward
self.no_feature_transformation = no_feature_transformation
if self.no_feature_transformation:
assert in_dim == out_dim
else:
self.weight = nn.Parameter(torch.Tensor(out_dim, in_dim))
# initialize parameters
std = 1. / np.sqrt(self.weight.size(1))
self.weight.data.uniform_(-std, std)
self.rescale = rescale
self.k = k
self.out_indices = out_indices
self.feature_subset = feature_subset
self.kernel = kernel
self.nonlinearity_1 = nonlinearity_1
self.nonlinearity_2 = nonlinearity_2
self.layer_norm = layer_norm
self.layer_magnitude = layer_magnitude
self.feature_selection_only = feature_selection_only
if kernel=='affine':
self.a = nn.Parameter(torch.Tensor(out_dim*2))
elif kernel=='gaussian' or kernel=='inner-product' or kernel=='avg_pool' or kernel=='cosine':
self.a = nn.Parameter(torch.Tensor(out_dim))
elif kernel=='key-value':
if key_dim is None:
self.key = None
key_dim = out_dim
else:
if self.use_previous_graph:
self.key = nn.Linear(in_dim, key_dim)
else:
self.key = nn.Linear(out_dim, key_dim)
self.key_dim = key_dim
self.a = nn.Parameter(torch.Tensor(out_dim))
else:
raise ValueError('kernel {0} is not supported'.format(kernel))
self.a.data.uniform_(0, 1)
def reset_graph(self, graph=None):
self.graph = graph
self.cal_graph = True if self.graph is None else False
def reset_out_indices(self, out_indices=None):
self.out_indices = out_indices
def forward(self, x):
if self.reset_graph_every_forward:
self.reset_graph()
N = x.size(0)
out_indices = dtype['long'](range(N)) if self.out_indices is None else self.out_indices
if self.feature_subset is not None:
x = x[:, self.feature_subset]
assert self.in_dim == x.size(1)
if self.no_feature_transformation:
out = x
else:
out = nn.functional.linear(x, self.weight)
feature_weight = nn.functional.softmax(self.a, dim=0)
if self.rescale and self.kernel!='affine':
out = out*feature_weight
if self.feature_selection_only:
return out
if self.nonlinearity_1 is not None:
out = self.nonlinearity_1(out)
k = N if self.k is None else min(self.k, out.size(0))
if self.kernel=='key-value':
if self.key is None:
keys = x if self.use_previous_graph else out
else:
keys = self.key(x) if self.use_previous_graph else self.key(out)
norm = torch.norm(keys, p=2, dim=-1)
att = (keys[out_indices].unsqueeze(-2) * keys.unsqueeze(-3)).sum(-1) / (norm[out_indices].unsqueeze(-1)*norm)
att_, idx = att.topk(k, -1)
a = Variable(torch.zeros(att.size()).fill_(float('-inf')).type(dtype['float']))
a.scatter_(-1, idx, att_)
a = nn.functional.softmax(a, dim=-1)
y = (a.unsqueeze(-1)*out.unsqueeze(-3)).sum(-2)
if self.nonlinearity_2 is not None:
y = self.nonlinearity_2(y)
if self.layer_norm:
y = nn.functional.relu(y) # maybe redundant; just play safe
y = y / y.sum(-1, keepdim=True) * self.layer_magnitude # <UncheckAssumption> y.sum(-1) > 0
return y
# The following line is BUG: self.graph won't update after the first update
# if self.graph is None
# replaced with the following line
if self.cal_graph:
if self.kernel != 'key-value':
features = x if self.use_previous_graph else out
dist = torch.norm(features.unsqueeze(1)-features.unsqueeze(0), p=2, dim=-1)
_, self.graph = dist.sort()
self.graph = self.graph[out_indices]
y = Variable(torch.zeros(len(out_indices), out.size(1)).type(dtype['float']))
for i, idx in enumerate(out_indices):
neighbor_idx = self.graph[i][:k]
if self.kernel == 'gaussian':
if self.rescale: # out has already been rescaled
a = -torch.sum((out[idx] - out[neighbor_idx])**2, dim=1)
else:
a = -torch.sum((feature_weight*(out[idx] - out[neighbor_idx]))**2, dim=1)
elif self.kernel == 'inner-product':
if self.rescale: # out has already been rescaled
a = torch.sum(out[idx]*out[neighbor_idx], dim=1)
else:
a = torch.sum(feature_weight*(out[idx]*out[neighbor_idx]), dim=1)
elif self.kernel == 'cosine':
if self.rescale: # out has already been rescaled
norm = torch.norm(out[idx]) * torch.norm(out[neighbor_idx], p=2, dim=-1)
a = torch.sum(out[idx]*out[neighbor_idx], dim=1) / norm
else:
norm = torch.norm(feature_weight*out[idx]) * torch.norm(feature_weight*out[neighbor_idx], p=2, dim=-1)
a = torch.sum(feature_weight*(out[idx]*out[neighbor_idx]), dim=1) / norm
elif self.kernel == 'affine':
a = torch.mv(torch.cat([(out[idx].unsqueeze(0)
* Variable(torch.ones(len(neighbor_idx)).unsqueeze(1)).type(dtype['float'])),
out[neighbor_idx]], dim=1), self.a)
elif self.kernel == 'avg_pool':
a = Variable(torch.ones(len(neighbor_idx)).type(dtype['float']))
a = nn.functional.softmax(a, dim=0)
# since sum(a)=1, the following line should torch.sum instead of torch.mean
y[i] = torch.sum(out[neighbor_idx]*a.unsqueeze(1), dim=0)
if self.nonlinearity_2 is not None:
y = self.nonlinearity_2(y)
if self.layer_norm:
y = nn.functional.relu(y) # maybe redundant; just play safe
y = y / y.sum(-1, keepdim=True) * self.layer_magnitude # <UncheckAssumption> y.sum(-1) > 0
return y
class GraphAttentionModel(nn.Module):
r"""Consist of multiple GraphAttentionLayer
Args:
in_dim: int, num_features
hidden_dims: an iterable of int, len(hidden_dims) is number of layers
ks: an iterable of int, k for GraphAttentionLayer.
Default None, use all neighbors for all GraphAttentionLayer
kernels, graphs, nonlinearities_1, nonlinearities_2, feature_subsets, out_indices, use_previous_graphs:
an iterable of * for GraphAttentionLayer
Shape:
- Input: (N, in_dim)
- Output: (x, hidden_dims[-1]), x=N if out_indices is None. Otherwise determined by out_indices
Attributes:
weights: a list of weight for GraphAttentionLayer
a: a list of a for GraphAttentionLayer
Examples:
>>> m=GraphAttentionModel(5, [3,4], [3,3])
>>> x = Variable(torch.randn(10,5))
>>> m(x)
"""
def __init__(self, in_dim, hidden_dims, ks=None, graphs=None, out_indices=None, feature_subsets=None,
kernels='affine', nonlinearities_1=nn.Hardtanh(), nonlinearities_2=None,
use_previous_graphs=True, reset_graph_every_forward=False, no_feature_transformation=False,
rescale=True):
super(GraphAttentionModel, self).__init__()
self.in_dim = in_dim
self.hidden_dims = hidden_dims
num_layers = len(hidden_dims)
self.no_feature_transformation = get_iterator(no_feature_transformation, num_layers)
for i in range(num_layers):
if self.no_feature_transformation[i]:
if i == 0:
assert hidden_dims[0] == in_dim
else:
assert hidden_dims[i-1] == hidden_dims[i]
if ks is None or isinstance(ks, int):
ks = [ks]*num_layers
self.ks = ks
if graphs is None:
graphs = [None]*num_layers
self.graphs = graphs
self.reset_graph_every_forward = reset_graph_every_forward
if isinstance(kernels, str):
kernels = [kernels]*num_layers
self.kernels = kernels
if isinstance(nonlinearities_1, nn.Module) or nonlinearities_1 is None:
nonlinearities_1 = [nonlinearities_1]*num_layers
# Tricky: if nonlinearities_1 is an instance of nn.Module, then nonlinearities_1 will become a
# child module of self. Reassignment will have to be a nn.Module
self.nonlinearities_1 = nonlinearities_1
if isinstance(nonlinearities_2, nn.Module) or nonlinearities_2 is None:
nonlinearities_2 = [nonlinearities_2]*num_layers
self.nonlinearities_2 = nonlinearities_2
self.out_indices = out_indices
if isinstance(out_indices, dtype['long']) or out_indices is None:
self.out_indices = [out_indices]*num_layers
self.feature_subsets = feature_subsets
if isinstance(feature_subsets, dtype['long']) or feature_subsets is None:
self.feature_subsets = [feature_subsets]*num_layers
self.use_previous_graphs = use_previous_graphs
if isinstance(use_previous_graphs, bool):
self.use_previous_graphs = [use_previous_graphs]*num_layers
self.rescale = get_iterator(rescale, num_layers)
self.attention = nn.Sequential()
for i in range(num_layers):
self.attention.add_module('layer'+str(i),
GraphAttentionLayer(in_dim if i==0 else hidden_dims[i-1], out_dim=hidden_dims[i],
k=self.ks[i], graph=self.graphs[i], out_indices=self.out_indices[i],
feature_subset=self.feature_subsets[i], kernel=self.kernels[i],
nonlinearity_1=self.nonlinearities_1[i],
nonlinearity_2=self.nonlinearities_2[i],
use_previous_graph=self.use_previous_graphs[i],
no_feature_transformation=self.no_feature_transformation[i],
rescale=self.rescale[i]))
def reset_graph(self, graph=None):
num_layers = len(self.hidden_dims)
graph = get_iterator(graph, num_layers)
for i in range(num_layers):
getattr(self.attention, 'layer'+str(i)).reset_graph(graph[i])
self.graphs = graph
def reset_out_indices(self, out_indices=None):
num_layers = len(self.hidden_dims)
out_indices = get_iterator(out_indices, num_layers)
assert len(out_indices) == num_layers
for i in range(num_layers):
# probably out_indices should not be a list;
# only the last layer will output certain points, all previous ones should output all points
getattr(self.attention, 'layer'+str(i)).reset_out_indices(out_indices[i])
self.out_indices = out_indices
# functools.reduce(lambda m, a: getattr(m, a), ('attention.layer'+str(i)).split('.'), self).reset_out_indices(out_indices[i])
def forward(self, x):
if self.reset_graph_every_forward:
self.reset_graph()
return self.attention(x)
class GraphAttentionGroup(nn.Module):
r"""Combine different view of data
Args:
group_index: an iterable of torch.LongTensor or other type that can be subscripted by torch.Tensor;
each element is feed to GraphAttentionModel as feature_subset
merge: if True, aggregate the output of each group (view);
Otherwise, concatenate the output of each group
in_dim: only used when group_index is None, otherwise determined by group_index
feature_subset: not used when group_index is not None: always set to None internally
out_dim, k, graph, out_indices, kernel, nonlinearity_1, nonlinearity_2, and
use_previous_graph are used similarly in GraphAttentionLayer
Shape:
- Input: (N, in_dim)
- Output: (x, y) where x=N if out_indices is None len(out_indices)
y=out_dim if merge is True else out_dim*len(group_index)
Attributes:
weight: (out_dim, in_dim)
a: (out_dim) if kernel='gaussian' else (out_dim * 2)
group_weight: (len(group_index)) if merge is True else None
Examples:
>>> m = GraphAttentionGroup(2, 2, k=None, graph=None, out_indices=None,
feature_subset=None, kernel='affine', nonlinearity_1=nn.Hardtanh(),
nonlinearity_2=None, use_previous_graph=True, group_index=[range(2), range(2,4)], merge=False)
>>> x = Variable(torch.randn(5, 4))
>>> m(x)
"""
def __init__(self, in_dim, out_dim, k=None, graph=None, out_indices=None,
feature_subset=None, kernel='affine', nonlinearity_1=nn.Hardtanh(),
nonlinearity_2=None, use_previous_graph=True, group_index=None, merge=True,
merge_type='sum', reset_graph_every_forward=False, no_feature_transformation=False,
rescale=True, merge_dim=None, layer_norm=False, layer_magnitude=100, key_dim=None):
super(GraphAttentionGroup, self).__init__()
self.group_index = group_index
num_groups = 0 if self.group_index is None else len(group_index)
self.num_groups = num_groups
self.merge = merge
assert merge_type=='sum' or merge_type=='affine'
self.merge_type = merge_type
self.components = nn.ModuleList()
self.group_weight = None
self.feature_weight = None
if group_index is None or len(group_index)==1:
self.components.append(GraphAttentionLayer(in_dim, out_dim, k, graph, out_indices, feature_subset,
kernel, nonlinearity_1, nonlinearity_2,
use_previous_graph,
reset_graph_every_forward=False,
no_feature_transformation=no_feature_transformation,
rescale=rescale, layer_norm=layer_norm,
layer_magnitude=layer_magnitude, key_dim=key_dim))
else:
self.out_dim = get_iterator(out_dim, num_groups)
self.k = get_iterator(k, num_groups)
# BUG here: did not handle a special case where len(graph) = num_groups
self.graph = get_iterator(graph, num_groups)
# all groups' output have the same first dimention
self.out_indices = out_indices
# each group use all of its own features
self.feature_subset = None
self.kernel = get_iterator(kernel, num_groups, isinstance(kernel, str))
self.nonlinearity_1 = get_iterator(nonlinearity_1, num_groups)
self.nonlinearity_2 = get_iterator(nonlinearity_2, num_groups)
self.use_previous_graph = get_iterator(use_previous_graph, num_groups)
self.layer_norm = get_iterator(layer_norm, num_groups)
self.layer_magnitude = get_iterator(layer_magnitude, num_groups)
self.key_dim = get_iterator(key_dim, num_groups)
for i, idx in enumerate(group_index):
self.components.append(
GraphAttentionLayer(len(idx), self.out_dim[i], self.k[i], self.graph[i],
self.out_indices, self.feature_subset, self.kernel[i],
self.nonlinearity_1[i], self.nonlinearity_2[i],
self.use_previous_graph[i],
reset_graph_every_forward=False,
no_feature_transformation=no_feature_transformation,
rescale=rescale, layer_norm=self.layer_norm[i],
layer_magnitude=self.layer_magnitude[i],
key_dim=self.key_dim[i]))
if self.merge:
self.merge_dim = merge_dim if isinstance(merge_dim, int) else self.out_dim[0]
if self.merge_type=='sum':
# all groups' output should have the same dimension
for i in self.out_dim:
assert i==self.merge_dim
self.group_weight = nn.Parameter(torch.Tensor(num_groups))
self.group_weight.data.uniform_(-1/num_groups,1/num_groups)
elif self.merge_type=='affine':
# This is ugly and buggy
# Do not assume each view have the same out_dim, finally output merge_dim
# if merge_dim is None then set merge_dim=self.out_dim[0]
self.feature_weight = nn.Parameter(torch.Tensor(self.merge_dim, sum(self.out_dim)))
self.feature_weight.data.uniform_(-1./sum(self.out_dim), 1./sum(self.out_dim))
def reset_graph(self, graph=None):
graphs = get_iterator(graph, self.num_groups)
for i, graph in enumerate(graphs):
getattr(self.components, str(i)).reset_graph(graph)
self.graph = graphs
def reset_out_indices(self, out_indices=None):
num_groups = len(self.group_index)
out_indices = get_iterator(out_indices, num_groups)
for i in range(num_groups):
getattr(self.components, str(i)).reset_out_indices(out_indices[i])
self.out_indices = out_indices
def forward(self, x):
if self.group_index is None or len(self.group_index)==1:
return self.components[0](x)
N = x.size(0) if self.out_indices is None else len(self.out_indices)
out = Variable(torch.zeros(N, functools.reduce(lambda x,y:x+y, self.out_dim)).type(dtype['float']))
j = 0
for i, idx in enumerate(self.group_index):
out[:, j:j+self.out_dim[i]] = self.components[i](x[:,idx])
j += self.out_dim[i]
if self.merge:
out_dim = self.merge_dim
num_groups = len(self.out_dim)
y = Variable(torch.zeros(N, out_dim).type(dtype['float']))
if self.merge_type == 'sum':
# normalize group weight
self.group_weight_normalized = nn.functional.softmax(self.group_weight, dim=0)
# Warning: cannot change y inplace, eg. y += something (and y = y+something?)
y = (self.group_weight_normalized.unsqueeze(1) * out.view(N, num_groups, out_dim)).sum(1)
elif self.merge_type == 'affine':
y = nn.functional.linear(out, self.feature_weight)
return y
else:
return out
class MultiviewAttention(nn.Module):
r"""Stack GraphAttentionGroup layers;
For simplicity, assume for each layer, the parameters of each group has the same shape
Args:
Has the same interface with GraphAttentionGroup, except
merge: a list of bool variable; default None, set it [False, False, ..., False, True] internally
hidden_dims: must be an iterable of int (len(hidden_dims) == num_layers)
or iterable (len(hidden_dims[0]) == num_views)
Warnings:
Be careful to use out_indices, feature_subset, can be buggy
Shape:
- Input: (N, *)
- Output:
Attributes:
Variables of each GraphAttentionGroupLayer
Examples:
>>> m = MultiviewAttention(4, [3,2], group_index=[range(2), range(2,4)])
>>> x = Variable(torch.randn(1, 4))
>>> print(m(x))
>>> model = FeatureExtractor(m.layers, [0,1])
>>> print(model(x))
"""
def __init__(self, in_dim, hidden_dims, k=None, graph=None, out_indices=None,
feature_subset=None, kernel='affine', nonlinearity_1=nn.Hardtanh(),
nonlinearity_2=None, use_previous_graph=True, group_index=None, merge=None,
merge_type='sum', reset_graph_every_forward=False, no_feature_transformation=False,
rescale=True, merge_dim=None, layer_norm=False, layer_magnitude=100,
key_dim=None):
super(MultiviewAttention, self).__init__()
assert isinstance(in_dim, int)
assert isinstance(hidden_dims, collections.Iterable)
self.reset_graph_every_forward = reset_graph_every_forward
self.hidden_dims = hidden_dims
num_layers = len(hidden_dims)
self.num_layers = num_layers
if group_index is None:
group_index = [range(in_dim)] if feature_subset is None else [feature_subset]
if merge is None:
merge = [False]*(num_layers-1) + [True]
elif isinstance(merge, bool):
merge = get_iterator(merge, num_layers)
out_indices = get_iterator(out_indices, num_layers)
k = get_iterator(k, num_layers)
no_feature_transformation = get_iterator(no_feature_transformation, num_layers)
rescale = get_iterator(rescale, num_layers)
# buggy here: interact with merge
merge_dim = get_iterator(merge_dim, num_layers)
if layer_norm is True:
layer_norm = [True]*(num_layers-1) + [False]
layer_norm = get_iterator(layer_norm, num_layers)
layer_magnitude = get_iterator(layer_magnitude, num_layers)
key_dim = get_iterator(key_dim, num_layers)
self.layers = nn.Sequential()
for i in range(num_layers):
self.layers.add_module(str(i),
GraphAttentionGroup(in_dim, hidden_dims[i], k[i], graph, out_indices[i], None,
kernel, nonlinearity_1, nonlinearity_2, use_previous_graph,
group_index, merge[i], merge_type, reset_graph_every_forward=False,
no_feature_transformation=no_feature_transformation[i],
rescale=rescale[i], merge_dim=merge_dim[i],
layer_norm=layer_norm[i], layer_magnitude=layer_magnitude[i],
key_dim=key_dim[i]))
# Very Very buggy here
# assume hidden_dims[i] is int or [int, int]
h = get_iterator(hidden_dims[i], len(group_index))
if merge[i]:
in_dim = h[0] if merge_dim[i] is None else merge_dim[i]
group_index = [range(in_dim)]
else:
in_dim = sum(h)
group_index = []
cnt = 0
for tmp in h:
group_index.append(range(cnt,cnt+tmp))
cnt += tmp
def reset_graph(self, graph=None):
for i in range(self.num_layers):
getattr(self.layers, str(i)).reset_graph(graph)
self.graph = graph
def reset_out_indices(self, out_indices=None):
num_layers = len(self.hidden_dims)
out_indices = get_iterator(out_indices, num_layers)
for i in range(num_layers):
getattr(self.layers, str(i)).reset_out_indices(out_indices[i])
self.out_indices = out_indices
def forward(self, x):
if self.reset_graph_every_forward:
self.reset_graph()
return self.layers(x)