|
a |
|
b/exp_template-mv-nn-v2.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import socket\n", |
|
|
10 |
"if socket.gethostname() == 'dlm':\n", |
|
|
11 |
" %env CUDA_DEVICE_ORDER=PCI_BUS_ID\n", |
|
|
12 |
" %env CUDA_VISIBLE_DEVICES=3" |
|
|
13 |
] |
|
|
14 |
}, |
|
|
15 |
{ |
|
|
16 |
"cell_type": "code", |
|
|
17 |
"execution_count": null, |
|
|
18 |
"metadata": {}, |
|
|
19 |
"outputs": [], |
|
|
20 |
"source": [ |
|
|
21 |
"import os\n", |
|
|
22 |
"import sys\n", |
|
|
23 |
"import re\n", |
|
|
24 |
"import collections\n", |
|
|
25 |
"import functools\n", |
|
|
26 |
"import requests, zipfile, io\n", |
|
|
27 |
"import pickle\n", |
|
|
28 |
"import copy\n", |
|
|
29 |
"\n", |
|
|
30 |
"import pandas\n", |
|
|
31 |
"import numpy as np\n", |
|
|
32 |
"import matplotlib\n", |
|
|
33 |
"import matplotlib.pyplot as plt\n", |
|
|
34 |
"import sklearn\n", |
|
|
35 |
"import sklearn.decomposition\n", |
|
|
36 |
"import sklearn.metrics\n", |
|
|
37 |
"import networkx\n", |
|
|
38 |
"\n", |
|
|
39 |
"import torch\n", |
|
|
40 |
"import torch.nn as nn\n", |
|
|
41 |
"\n", |
|
|
42 |
"lib_path = 'I:/code'\n", |
|
|
43 |
"if not os.path.exists(lib_path):\n", |
|
|
44 |
" lib_path = '/media/6T/.tianle/.lib'\n", |
|
|
45 |
"if not os.path.exists(lib_path):\n", |
|
|
46 |
" lib_path = '/projects/academic/azhang/tianlema/lib'\n", |
|
|
47 |
"if os.path.exists(lib_path) and lib_path not in sys.path:\n", |
|
|
48 |
" sys.path.append(lib_path)\n", |
|
|
49 |
" \n", |
|
|
50 |
"from dl.models.basic_models import *\n", |
|
|
51 |
"from dl.utils.visualization.visualization import *\n", |
|
|
52 |
"from dl.utils.outlier import *\n", |
|
|
53 |
"from dl.utils.train import *\n", |
|
|
54 |
"from autoencoder.autoencoder import *\n", |
|
|
55 |
"from dl.utils.utils import get_overlap_samples, filter_clinical_dict, get_target_variable\n", |
|
|
56 |
"from dl.utils.utils import get_shuffled_data, target_to_numpy\n", |
|
|
57 |
"\n", |
|
|
58 |
"%load_ext autoreload\n", |
|
|
59 |
"%autoreload 2\n", |
|
|
60 |
"\n", |
|
|
61 |
"\n", |
|
|
62 |
"use_gpu = True\n", |
|
|
63 |
"if use_gpu and torch.cuda.is_available():\n", |
|
|
64 |
" device = torch.device('cuda')\n", |
|
|
65 |
" print('Using GPU:)')\n", |
|
|
66 |
"else:\n", |
|
|
67 |
" device = torch.device('cpu')\n", |
|
|
68 |
" print('Using CPU:(')" |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"execution_count": null, |
|
|
74 |
"metadata": {}, |
|
|
75 |
"outputs": [], |
|
|
76 |
"source": [ |
|
|
77 |
"# neural net models include nn (mlp), resnet, densenet; another choice is ml (machine learning)\n", |
|
|
78 |
"# model_type, dense, residual are dependent\n", |
|
|
79 |
"model_type = 'resnet'\n", |
|
|
80 |
"dense = False\n", |
|
|
81 |
"residual = True\n", |
|
|
82 |
"hidden_dim = [100, 100]\n", |
|
|
83 |
"train_portion = 0.7\n", |
|
|
84 |
"val_portion = 0.1\n", |
|
|
85 |
"test_portion = 0.2\n", |
|
|
86 |
"num_train_types = -1 # -1 means not used\n", |
|
|
87 |
"num_val_types = -1\n", |
|
|
88 |
"num_test_types = -1 # this will almost never be used \n", |
|
|
89 |
"num_sets = 10\n", |
|
|
90 |
"num_folds = 10 # no longer used anymore\n", |
|
|
91 |
"sel_set_idx = 0\n", |
|
|
92 |
"cv_type = 'instance-shuffle' # or 'group-shuffle'; cross validation shuffle method\n", |
|
|
93 |
"sel_disease_types = 'all'\n", |
|
|
94 |
"# The number of total samples and the numbers for each class in selected disease types must >=\n", |
|
|
95 |
"min_num_samples_per_type_cls = [100, 0]\n", |
|
|
96 |
"# if 'auto-search', will search for the file first; if not exist, then generate random data split\n", |
|
|
97 |
"# and write to the file;\n", |
|
|
98 |
"# if string other than 'auto-search' is provided, assume the string is a proper file name, \n", |
|
|
99 |
"# and read the file;\n", |
|
|
100 |
"# if False, will generate a random data split, but not write to file \n", |
|
|
101 |
"# if True will generate a random data split, and write to file\n", |
|
|
102 |
"predefined_sample_set_file = 'auto-search' \n", |
|
|
103 |
"target_variable = 'PFI' # To do: target variable can be a list (partially handled)\n", |
|
|
104 |
"target_variable_type = 'discrete' # or 'continuous' real numbers\n", |
|
|
105 |
"target_variable_range = [0, 1]\n", |
|
|
106 |
"data_type = ['gene', 'methy', 'rppa', 'mirna']\n", |
|
|
107 |
"normal_transform_feature = True\n", |
|
|
108 |
"additional_vars = []#['age_at_initial_pathologic_diagnosis', 'gender']\n", |
|
|
109 |
"additional_var_types = []#['continuous', 'discrete']\n", |
|
|
110 |
"additional_var_ranges = []#[[0, 100], ['MALE', 'FEMALE']]\n", |
|
|
111 |
"randomize_labels = False\n", |
|
|
112 |
"lr = 5e-4\n", |
|
|
113 |
"weight_decay = 1e-4\n", |
|
|
114 |
"num_epochs = 1000\n", |
|
|
115 |
"reduce_every = 500\n", |
|
|
116 |
"show_results_in_notebook = True" |
|
|
117 |
] |
|
|
118 |
}, |
|
|
119 |
{ |
|
|
120 |
"cell_type": "markdown", |
|
|
121 |
"metadata": {}, |
|
|
122 |
"source": [ |
|
|
123 |
"## Prepare data" |
|
|
124 |
] |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "code", |
|
|
128 |
"execution_count": null, |
|
|
129 |
"metadata": {}, |
|
|
130 |
"outputs": [], |
|
|
131 |
"source": [ |
|
|
132 |
"result_folder = 'results'\n", |
|
|
133 |
"data_split_idx_folder = f'{result_folder}/data_split_idx'\n", |
|
|
134 |
"project_folder = '../../pan-can-atlas'\n", |
|
|
135 |
"print_stats = True\n", |
|
|
136 |
"if not os.path.exists(project_folder):\n", |
|
|
137 |
" project_folder = 'F:/TCGA/Pan-Cancer-Atlas'\n", |
|
|
138 |
"filepath = f'{project_folder}/data/processed/combined2.pkl'\n", |
|
|
139 |
"with open(filepath, 'rb') as f:\n", |
|
|
140 |
" data = pickle.load(f)\n", |
|
|
141 |
" patient_clinical = data['patient_clinical']\n", |
|
|
142 |
" feature_mat_dict = data['feature_mat_dict']\n", |
|
|
143 |
" feature_interaction_mat_dict = data['feature_interaction_mat_dict']\n", |
|
|
144 |
" feature_id_dict = data['feature_id_dict']\n", |
|
|
145 |
" aliquot_id_dict = data['aliquot_id_dict']\n", |
|
|
146 |
"# sel_patient_ids = data['sample_id_sel']\n", |
|
|
147 |
"# sample_idx_sel_dict = data['sample_idx_sel_dict']\n", |
|
|
148 |
"# for k, v in sample_idx_sel_dict.items():\n", |
|
|
149 |
"# assert [i[:12] for i in aliquot_id_dict[k][v]] == sel_patient_ids\n", |
|
|
150 |
"\n", |
|
|
151 |
"if print_stats:\n", |
|
|
152 |
" for k, v in feature_mat_dict.items():\n", |
|
|
153 |
" print(f'feature_mat: {k}, max={v.max():.3f}, min={v.min():.3f}, '\n", |
|
|
154 |
" f'mean={v.mean():.3f}, {np.mean(v>0):.3f}') \n", |
|
|
155 |
" for k, v in feature_interaction_mat_dict.items():\n", |
|
|
156 |
" print(f'feature_interaction_mat: {k}, max={v.max():.3f}, min={v.min():.3f}, '\n", |
|
|
157 |
" f'mean={v.mean():.3f}, {np.mean(v>0):.3f}') \n", |
|
|
158 |
" for k, v in feature_id_dict.items():\n", |
|
|
159 |
" print(k, v.shape, v[0])\n", |
|
|
160 |
" for k, v in aliquot_id_dict.items():\n", |
|
|
161 |
" print(k, v.shape, v[0])" |
|
|
162 |
] |
|
|
163 |
}, |
|
|
164 |
{ |
|
|
165 |
"cell_type": "code", |
|
|
166 |
"execution_count": null, |
|
|
167 |
"metadata": {}, |
|
|
168 |
"outputs": [], |
|
|
169 |
"source": [ |
|
|
170 |
"# select samples with required clinical variables\n", |
|
|
171 |
"clinical_dict = filter_clinical_dict(target_variable, target_variable_type=target_variable_type, \n", |
|
|
172 |
" target_variable_range=target_variable_range, \n", |
|
|
173 |
" clinical_dict=patient_clinical)\n", |
|
|
174 |
"if len(additional_vars) > 0:\n", |
|
|
175 |
" clinical_dict = filter_clinical_dict(additional_vars, target_variable_type=additional_var_types, \n", |
|
|
176 |
" target_variable_range=additional_var_ranges, \n", |
|
|
177 |
" clinical_dict=clinical_dict)\n", |
|
|
178 |
"\n", |
|
|
179 |
"# select samples with feature matrix of given type(s)\n", |
|
|
180 |
"if isinstance(data_type, str):\n", |
|
|
181 |
" sample_list = {s[:12] for s in aliquot_id_dict[data_type]}\n", |
|
|
182 |
" data_type_str = data_type\n", |
|
|
183 |
"elif isinstance(data_type, (list, tuple)):\n", |
|
|
184 |
" sample_list = get_overlap_samples([aliquot_id_dict[dtype] for dtype in data_type], \n", |
|
|
185 |
" common_list=None, start=0, end=12, return_common_list=True)\n", |
|
|
186 |
" data_type_str = '-'.join(sorted(data_type))\n", |
|
|
187 |
"else:\n", |
|
|
188 |
" raise ValueError(f'data_type must be str or list/tuple, but is {type(data_type)}')\n", |
|
|
189 |
"sample_list = sample_list.intersection(clinical_dict)\n", |
|
|
190 |
"\n", |
|
|
191 |
"# select samples with given disease types\n", |
|
|
192 |
"sel_disease_type_str = sel_disease_types # will be overwritten if it is a list\n", |
|
|
193 |
"if isinstance(sel_disease_types, (list, tuple)):\n", |
|
|
194 |
" sample_list = [s for s in sample_list if clinical_dict[s]['type'] in sel_disease_types]\n", |
|
|
195 |
" sel_disease_type_str = '-'.join(sorted(sel_disease_types))\n", |
|
|
196 |
"elif isinstance(sel_disease_types, str) and sel_disease_types!='all':\n", |
|
|
197 |
" sample_list = [s for s in sample_list if clinical_dict[s]['type'] == sel_disease_types]\n", |
|
|
198 |
"else:\n", |
|
|
199 |
" assert sel_disease_types == 'all'\n", |
|
|
200 |
" \n", |
|
|
201 |
"# For classification tasks with given min_num_samples_per_type_cls,\n", |
|
|
202 |
"# only keep disease types that have a minimal number of samples per type and per class\n", |
|
|
203 |
"# Reflection: it might be better to use collections.defaultdict(list) to store samples in each type\n", |
|
|
204 |
"type_cnt = collections.Counter([clinical_dict[s]['type'] for s in sample_list])\n", |
|
|
205 |
"if sum(min_num_samples_per_type_cls)>0 and (target_variable_type=='discrete' \n", |
|
|
206 |
" or target_variable_type[0]=='discrete'):\n", |
|
|
207 |
" # the number of samples in each disease type >= min_num_samples_per_type_cls[0]\n", |
|
|
208 |
" type_cnt = {k: v for k, v in type_cnt.items() if v >= min_num_samples_per_type_cls[0]}\n", |
|
|
209 |
" disease_type_cnt = {}\n", |
|
|
210 |
" for k in type_cnt:\n", |
|
|
211 |
" # collections.Counter can accept generator\n", |
|
|
212 |
" cls_cnt = collections.Counter(clinical_dict[s][target_variable] \n", |
|
|
213 |
" if isinstance(target_variable, str) \n", |
|
|
214 |
" else clinical_dict[s][target_variable[0]] \n", |
|
|
215 |
" for s in sample_list if clinical_dict[s]['type']==k)\n", |
|
|
216 |
" if all([v >= min_num_samples_per_type_cls[1] for v in cls_cnt.values()]):\n", |
|
|
217 |
" # the number of samples in each class >= min_num_samples_per_type_cls[1]\n", |
|
|
218 |
" disease_type_cnt[k] = dict(cls_cnt)\n", |
|
|
219 |
" print(k, disease_type_cnt[k])\n", |
|
|
220 |
" sample_list = [s for s in sample_list if clinical_dict[s]['type'] in disease_type_cnt]\n", |
|
|
221 |
"sel_patient_ids = sorted(sample_list)\n", |
|
|
222 |
"print(f'Selected {len(sel_patient_ids)} patients from {len(disease_type_cnt)} disease_types')" |
|
|
223 |
] |
|
|
224 |
}, |
|
|
225 |
{ |
|
|
226 |
"cell_type": "markdown", |
|
|
227 |
"metadata": {}, |
|
|
228 |
"source": [ |
|
|
229 |
"### Split data into training, validation, and test sets" |
|
|
230 |
] |
|
|
231 |
}, |
|
|
232 |
{ |
|
|
233 |
"cell_type": "code", |
|
|
234 |
"execution_count": null, |
|
|
235 |
"metadata": {}, |
|
|
236 |
"outputs": [], |
|
|
237 |
"source": [ |
|
|
238 |
"predefined_sample_set_filename = (target_variable if isinstance(target_variable,str) \n", |
|
|
239 |
" else '-'.join(target_variable))\n", |
|
|
240 |
"predefined_sample_set_filename += f'_{cv_type}'\n", |
|
|
241 |
"if len(additional_vars) > 0:\n", |
|
|
242 |
" predefined_sample_set_filename += f\"_{'-'.join(sorted(additional_vars))}\"\n", |
|
|
243 |
"\n", |
|
|
244 |
"predefined_sample_set_filename += (f\"_{data_type_str}_{sel_disease_type_str}_\"\n", |
|
|
245 |
" f\"{'-'.join(map(str, min_num_samples_per_type_cls))}\")\n", |
|
|
246 |
"predefined_sample_set_filename += f\"_{'-'.join(map(str, [train_portion, val_portion, test_portion]))}\"\n", |
|
|
247 |
"if cv_type == 'group-shuffle' and num_train_types > 0:\n", |
|
|
248 |
" predefined_sample_set_filename += f\"_{'-'.join(map(str, [num_train_types, num_val_types, num_test_types]))}\"\n", |
|
|
249 |
"predefined_sample_set_filename += f'_{num_sets}sets'\n", |
|
|
250 |
"res_file = f\"{predefined_sample_set_filename}_{sel_set_idx}_{'-'.join(map(str, hidden_dim))}_{model_type}.pkl\"\n", |
|
|
251 |
"predefined_sample_set_filename += '.pkl'\n", |
|
|
252 |
"# This will be overwritten if predefined_sample_set_file == 'auto-search' or filepath, and the file exists\n", |
|
|
253 |
"predefined_sample_sets = [get_shuffled_data(sel_patient_ids, clinical_dict, cv_type=cv_type, \n", |
|
|
254 |
" instance_portions=[train_portion, val_portion, test_portion], \n", |
|
|
255 |
" group_sizes=[num_train_types, num_val_types, num_test_types],\n", |
|
|
256 |
" group_variable_name='type', seed=None, verbose=False) for i in range(num_sets)]\n", |
|
|
257 |
"if predefined_sample_set_file == 'auto-search':\n", |
|
|
258 |
" if os.path.exists(f'{data_split_idx_folder}/{predefined_sample_set_filename}'):\n", |
|
|
259 |
" with open(f'{data_split_idx_folder}/{predefined_sample_set_filename}', 'rb') as f:\n", |
|
|
260 |
" print(f'Read predefined_sample_set_file: '\n", |
|
|
261 |
" f'{data_split_idx_folder}/{predefined_sample_set_filename}')\n", |
|
|
262 |
" tmp = pickle.load(f)\n", |
|
|
263 |
" # overwrite calculated predefined_sample_sets\n", |
|
|
264 |
" predefined_sample_sets = tmp['predefined_sample_sets'] \n", |
|
|
265 |
"elif isinstance(predefined_sample_set_file, str): # but not 'auto-search'; assume it's a file name\n", |
|
|
266 |
" if os.path.exists(predefined_sample_set_file):\n", |
|
|
267 |
" with open(f'{data_split_idx_folder}/{predefined_sample_set_file}', 'rb') as f:\n", |
|
|
268 |
" print(f'Read predefined_sample_set_file: {data_split_idx_folder}/{predefined_sample_set_file}')\n", |
|
|
269 |
" tmp = pickle.load(f)\n", |
|
|
270 |
" predefined_sample_sets = tmp['predefined_sample_sets']\n", |
|
|
271 |
" else:\n", |
|
|
272 |
" raise ValueError(f'predefined_sample_set_file: {data_split_idx_folder}/{predefined_sample_set_file} does not exist!')\n", |
|
|
273 |
"\n", |
|
|
274 |
"if (not os.path.exists(f'{data_split_idx_folder}/{predefined_sample_set_filename}') \n", |
|
|
275 |
" and predefined_sample_set_file == 'auto-search') or predefined_sample_set_file is True:\n", |
|
|
276 |
" with open(f'{data_split_idx_folder}/{predefined_sample_set_filename}', 'wb') as f:\n", |
|
|
277 |
" print(f'Write predefined_sample_set_file: {data_split_idx_folder}/{predefined_sample_set_filename}')\n", |
|
|
278 |
" pickle.dump({'predefined_sample_sets': predefined_sample_sets}, f)\n", |
|
|
279 |
" \n", |
|
|
280 |
"sel_patient_ids, idx_splits = predefined_sample_sets[sel_set_idx]\n", |
|
|
281 |
"train_idx, val_idx, test_idx = idx_splits" |
|
|
282 |
] |
|
|
283 |
}, |
|
|
284 |
{ |
|
|
285 |
"cell_type": "code", |
|
|
286 |
"execution_count": null, |
|
|
287 |
"metadata": {}, |
|
|
288 |
"outputs": [], |
|
|
289 |
"source": [ |
|
|
290 |
"if isinstance(data_type, str):\n", |
|
|
291 |
" sample_lists = [aliquot_id_dict[data_type]]\n", |
|
|
292 |
"else:\n", |
|
|
293 |
" assert isinstance(data_type, (list, tuple))\n", |
|
|
294 |
" sample_lists = [aliquot_id_dict[dtype] for dtype in data_type]\n", |
|
|
295 |
"idx_lists = get_overlap_samples(sample_lists=sample_lists, common_list=sel_patient_ids, \n", |
|
|
296 |
" start=0, end=12, return_common_list=False)\n", |
|
|
297 |
"sample_idx_sel_dict = {}\n", |
|
|
298 |
"if isinstance(data_type, str):\n", |
|
|
299 |
" sample_idx_sel_dict = {data_type: idx_lists[0]}\n", |
|
|
300 |
"else:\n", |
|
|
301 |
" sample_idx_sel_dict = {dtype: idx_list for dtype, idx_list in zip(data_type, idx_lists)}" |
|
|
302 |
] |
|
|
303 |
}, |
|
|
304 |
{ |
|
|
305 |
"cell_type": "code", |
|
|
306 |
"execution_count": null, |
|
|
307 |
"metadata": {}, |
|
|
308 |
"outputs": [], |
|
|
309 |
"source": [ |
|
|
310 |
"if isinstance(data_type, str):\n", |
|
|
311 |
" print(f'Only use one data type: {data_type}')\n", |
|
|
312 |
" num_data_types = 1\n", |
|
|
313 |
" mat = feature_mat_dict[data_type][sample_idx_sel_dict[data_type]]\n", |
|
|
314 |
" # Data preprocessing: make each row have mean 0 and sd 1.\n", |
|
|
315 |
" x = (mat - mat.mean(axis=1, keepdims=True)) / mat.std(axis=1, keepdims=True)\n", |
|
|
316 |
" interaction_mat = feature_interaction_mat_dict[data_type]\n", |
|
|
317 |
" interaction_mat = torch.from_numpy(interaction_mat).float().to(device)\n", |
|
|
318 |
" # Normalize these interaction mat\n", |
|
|
319 |
" interaction_mat = interaction_mat / interaction_mat.norm()\n", |
|
|
320 |
"else:\n", |
|
|
321 |
" mat = []\n", |
|
|
322 |
" interaction_mats = []\n", |
|
|
323 |
" in_dims = []\n", |
|
|
324 |
" num_data_types = len(data_type)\n", |
|
|
325 |
" # do not handle the special case of [data_type] to avoid too much code complexity\n", |
|
|
326 |
" assert num_data_types > 1 \n", |
|
|
327 |
" for dtype in data_type: # multiple data types\n", |
|
|
328 |
" m = feature_mat_dict[dtype][sample_idx_sel_dict[dtype]]\n", |
|
|
329 |
" #When there are multiple data types, make sure each type is normalized to have mean 0 and std 1\n", |
|
|
330 |
" m = (m - m.mean(axis=1, keepdims=True)) / m.std(axis=1, keepdims=True)\n", |
|
|
331 |
" mat.append(m)\n", |
|
|
332 |
" in_dims.append(m.shape[1])\n", |
|
|
333 |
" # For neural network model graph laplacian regularizer\n", |
|
|
334 |
" interaction_mat = feature_interaction_mat_dict[dtype]\n", |
|
|
335 |
" interaction_mat = torch.from_numpy(interaction_mat).float().to(device)\n", |
|
|
336 |
" # Normalize these interaction mat\n", |
|
|
337 |
" interaction_mat = interaction_mat / interaction_mat.norm()\n", |
|
|
338 |
" interaction_mats.append(interaction_mat)\n", |
|
|
339 |
" print(f'{dtype}: {m.shape}; '\n", |
|
|
340 |
" f'interaction_mat: mean={interaction_mat.mean().item():2f}, '\n", |
|
|
341 |
" f'std={interaction_mat.std().item():2f}, {interaction_mat.shape[0]}')\n", |
|
|
342 |
" # Later interaction_mat will be passed to Loss_feature_interaction\n", |
|
|
343 |
" interaction_mat = interaction_mats\n", |
|
|
344 |
" mat = np.concatenate(mat, axis=1)\n", |
|
|
345 |
" # For machine learing methods that use concatenated features without knowing underlying views,\n", |
|
|
346 |
" # it might be good to make each row have mean 0 and sd 1.\n", |
|
|
347 |
" x = (mat - mat.mean(axis=1, keepdims=True)) / mat.std(axis=1, keepdims=True)\n", |
|
|
348 |
"\n", |
|
|
349 |
"if normal_transform_feature:\n", |
|
|
350 |
" X = x\n", |
|
|
351 |
"else:\n", |
|
|
352 |
" X = mat" |
|
|
353 |
] |
|
|
354 |
}, |
|
|
355 |
{ |
|
|
356 |
"cell_type": "code", |
|
|
357 |
"execution_count": null, |
|
|
358 |
"metadata": {}, |
|
|
359 |
"outputs": [], |
|
|
360 |
"source": [ |
|
|
361 |
"y_targets = get_target_variable(target_variable, clinical_dict, sel_patient_ids)\n", |
|
|
362 |
"y_true = target_to_numpy(y_targets, target_variable_type, target_variable_range)\n", |
|
|
363 |
"if len(additional_vars) > 0:\n", |
|
|
364 |
" additional_variables = get_target_variable(additional_vars, clinical_dict, sel_patient_ids)\n", |
|
|
365 |
" # to do handle additional variables such as age and gender" |
|
|
366 |
] |
|
|
367 |
}, |
|
|
368 |
{ |
|
|
369 |
"cell_type": "markdown", |
|
|
370 |
"metadata": {}, |
|
|
371 |
"source": [ |
|
|
372 |
"### To do: handle multiple inputs, multiple targets" |
|
|
373 |
] |
|
|
374 |
}, |
|
|
375 |
{ |
|
|
376 |
"cell_type": "code", |
|
|
377 |
"execution_count": null, |
|
|
378 |
"metadata": {}, |
|
|
379 |
"outputs": [], |
|
|
380 |
"source": [ |
|
|
381 |
"# sklearn classifiers also accept torch.Tensor\n", |
|
|
382 |
"X = torch.tensor(X).float().to(device)\n", |
|
|
383 |
"y_true = torch.tensor(y_true).long().to(device)\n", |
|
|
384 |
"num_cls = len(torch.unique(y_true))\n", |
|
|
385 |
"\n", |
|
|
386 |
"x_train, y_train = X[train_idx], y_true[train_idx]\n", |
|
|
387 |
"x_val, y_val = X[val_idx], y_true[val_idx]\n", |
|
|
388 |
"x_test, y_test = X[test_idx], y_true[test_idx]\n", |
|
|
389 |
"print(x_train.shape, x_val.shape, x_test.shape, y_train.shape, y_val.shape, y_test.shape)\n", |
|
|
390 |
"\n", |
|
|
391 |
"label_prob_train = get_label_prob(y_train, verbose=False)\n", |
|
|
392 |
"label_probs = [label_prob_train]\n", |
|
|
393 |
"if len(y_val)>0:\n", |
|
|
394 |
" label_prob_val = get_label_prob(y_val, verbose=False)\n", |
|
|
395 |
" assert len(label_prob_train) == len(label_prob_val)\n", |
|
|
396 |
" label_probs.append(label_prob_val)\n", |
|
|
397 |
"if len(y_test)>0:\n", |
|
|
398 |
" label_prob_test = get_label_prob(y_test, verbose=False)\n", |
|
|
399 |
" assert len(label_prob_train) == len(label_prob_test)\n", |
|
|
400 |
" label_probs.append(label_prob_test)\n", |
|
|
401 |
"if isinstance(label_probs, torch.Tensor):\n", |
|
|
402 |
" print('label distribution:\\n', torch.stack(label_probs, dim=1))\n", |
|
|
403 |
"else:\n", |
|
|
404 |
" print('label distribution:\\n', np.stack(label_probs, axis=1))" |
|
|
405 |
] |
|
|
406 |
}, |
|
|
407 |
{ |
|
|
408 |
"cell_type": "markdown", |
|
|
409 |
"metadata": {}, |
|
|
410 |
"source": [ |
|
|
411 |
"### Optionally randomize true class labels" |
|
|
412 |
] |
|
|
413 |
}, |
|
|
414 |
{ |
|
|
415 |
"cell_type": "code", |
|
|
416 |
"execution_count": null, |
|
|
417 |
"metadata": { |
|
|
418 |
"scrolled": true |
|
|
419 |
}, |
|
|
420 |
"outputs": [], |
|
|
421 |
"source": [ |
|
|
422 |
"if randomize_labels:\n", |
|
|
423 |
" print('Randomize class labels!')\n", |
|
|
424 |
" y_train = torch.multinomial(label_prob_train, len(y_train), replacement=True)\n", |
|
|
425 |
" if len(y_val) > 0:\n", |
|
|
426 |
" y_val = torch.multinomial(label_prob_val, len(y_val), replacement=True)\n", |
|
|
427 |
" if len(y_test) > 0:\n", |
|
|
428 |
" y_test = torch.multinomial(label_prob_test, len(y_test), replacement=True)" |
|
|
429 |
] |
|
|
430 |
}, |
|
|
431 |
{ |
|
|
432 |
"cell_type": "markdown", |
|
|
433 |
"metadata": {}, |
|
|
434 |
"source": [ |
|
|
435 |
"## Neural network models" |
|
|
436 |
] |
|
|
437 |
}, |
|
|
438 |
{ |
|
|
439 |
"cell_type": "code", |
|
|
440 |
"execution_count": null, |
|
|
441 |
"metadata": {}, |
|
|
442 |
"outputs": [], |
|
|
443 |
"source": [ |
|
|
444 |
"# loss_fn_cls = torch.nn.CrossEntropyLoss(weight=torch.tensor([0.3, 0.6], device=device))\n", |
|
|
445 |
"loss_fn_cls = torch.nn.CrossEntropyLoss()\n", |
|
|
446 |
"loss_fn_reg = torch.nn.MSELoss()\n", |
|
|
447 |
"loss_fns = [loss_fn_cls, loss_fn_reg]\n", |
|
|
448 |
"# For multiple data types, there are multiple interaction mats\n", |
|
|
449 |
"feat_interact_loss_type = 'graph_laplacian'\n", |
|
|
450 |
"if num_data_types > 1:\n", |
|
|
451 |
" weight_path = ['decoders', range(num_data_types), 'weight'] \n", |
|
|
452 |
"else:\n", |
|
|
453 |
" weight_path = ['decoder', 'weight']\n", |
|
|
454 |
"loss_feat_interact = Loss_feature_interaction(interaction_mat=interaction_mat, \n", |
|
|
455 |
" loss_type=feat_interact_loss_type, \n", |
|
|
456 |
" weight_path=weight_path, \n", |
|
|
457 |
" normalize=True)\n", |
|
|
458 |
"other_loss_fns = [loss_feat_interact]\n", |
|
|
459 |
"if num_data_types > 1:\n", |
|
|
460 |
" view_sim_loss_type = 'hub'\n", |
|
|
461 |
" explicit_target = True\n", |
|
|
462 |
" cal_target='mean-feature'\n", |
|
|
463 |
" # In this set of experiments, the encoders for all views will have the same hidden_dim\n", |
|
|
464 |
" loss_view_sim = Loss_view_similarity(sections=hidden_dim[-1], loss_type=view_sim_loss_type, \n", |
|
|
465 |
" explicit_target=explicit_target, cal_target=cal_target, target=None)\n", |
|
|
466 |
" loss_fns.append(loss_view_sim)" |
|
|
467 |
] |
|
|
468 |
}, |
|
|
469 |
{ |
|
|
470 |
"cell_type": "code", |
|
|
471 |
"execution_count": null, |
|
|
472 |
"metadata": {}, |
|
|
473 |
"outputs": [], |
|
|
474 |
"source": [ |
|
|
475 |
"model_names = []\n", |
|
|
476 |
"split_names = ['train', 'val', 'test']\n", |
|
|
477 |
"metric_names = ['acc', 'precision', 'recall', 'f1_score', 'adjusted_mutual_info', 'auc', \n", |
|
|
478 |
" 'average_precision']\n", |
|
|
479 |
"metric_all = []\n", |
|
|
480 |
"confusion_mat_all = []\n", |
|
|
481 |
"loss_his_all = []\n", |
|
|
482 |
"acc_his_all = []" |
|
|
483 |
] |
|
|
484 |
}, |
|
|
485 |
{ |
|
|
486 |
"cell_type": "code", |
|
|
487 |
"execution_count": null, |
|
|
488 |
"metadata": {}, |
|
|
489 |
"outputs": [], |
|
|
490 |
"source": [ |
|
|
491 |
"def get_result(model, best_model, best_val_acc, best_epoch, x_train, y_train, x_val, y_val, \n", |
|
|
492 |
" x_test, y_test, batch_size, multi_heads, show_results_in_notebook=True, \n", |
|
|
493 |
" loss_idx=0, acc_idx=0):\n", |
|
|
494 |
" if len(x_val) > 0:\n", |
|
|
495 |
" print(f'Best model on validation set: best_val_acc={best_val_acc:.2f}, epoch={best_epoch}')\n", |
|
|
496 |
" metric = eval_classification_multi_splits(best_model, xs=[x_train, x_val, x_test], \n", |
|
|
497 |
" ys=[y_train, y_val, y_test], batch_size=batch_size, multi_heads=multi_heads)\n", |
|
|
498 |
"\n", |
|
|
499 |
" if show_results_in_notebook:\n", |
|
|
500 |
" print('\\nModel after the last training epoch:')\n", |
|
|
501 |
" eval_classification_multi_splits(model, xs=[x_train, x_val, x_test], \n", |
|
|
502 |
" ys=[y_train, y_val, y_test], batch_size=batch_size, \n", |
|
|
503 |
" multi_heads=multi_heads, return_result=False)\n", |
|
|
504 |
"\n", |
|
|
505 |
" plot_history_multi_splits([loss_train_his, loss_val_his, loss_test_his], title='Loss', \n", |
|
|
506 |
" idx=loss_idx)\n", |
|
|
507 |
" plot_history_multi_splits([acc_train_his, acc_val_his, acc_test_his], title='Acc', idx=acc_idx)\n", |
|
|
508 |
" # scatter plot\n", |
|
|
509 |
" plot_data_multi_splits(best_model, [x_train, x_val, x_test], [y_train, y_val, y_test], \n", |
|
|
510 |
" num_heads=2 if multi_heads else 1, \n", |
|
|
511 |
" titles=['Training', 'Validation', 'Test'], batch_size=batch_size)\n", |
|
|
512 |
" return metric" |
|
|
513 |
] |
|
|
514 |
}, |
|
|
515 |
{ |
|
|
516 |
"cell_type": "markdown", |
|
|
517 |
"metadata": {}, |
|
|
518 |
"source": [ |
|
|
519 |
"# Plain deep learning model" |
|
|
520 |
] |
|
|
521 |
}, |
|
|
522 |
{ |
|
|
523 |
"cell_type": "code", |
|
|
524 |
"execution_count": null, |
|
|
525 |
"metadata": {}, |
|
|
526 |
"outputs": [], |
|
|
527 |
"source": [ |
|
|
528 |
"batch_size = 1000\n", |
|
|
529 |
"print_every = 100\n", |
|
|
530 |
"eval_every = 1" |
|
|
531 |
] |
|
|
532 |
}, |
|
|
533 |
{ |
|
|
534 |
"cell_type": "code", |
|
|
535 |
"execution_count": null, |
|
|
536 |
"metadata": {}, |
|
|
537 |
"outputs": [], |
|
|
538 |
"source": [ |
|
|
539 |
"in_dim = x_train.shape[1]\n", |
|
|
540 |
"print('Plain deep learning model')\n", |
|
|
541 |
"model_names.append('NN')\n", |
|
|
542 |
"model = DenseLinear(in_dim, hidden_dim+[num_cls], dense=dense, residual=residual).to(device)\n", |
|
|
543 |
"multi_heads = False\n", |
|
|
544 |
"\n", |
|
|
545 |
"loss_train_his = []\n", |
|
|
546 |
"loss_val_his = []\n", |
|
|
547 |
"loss_test_his = []\n", |
|
|
548 |
"acc_train_his = []\n", |
|
|
549 |
"acc_val_his = []\n", |
|
|
550 |
"acc_test_his = []\n", |
|
|
551 |
"best_model = model\n", |
|
|
552 |
"best_val_acc = 0\n", |
|
|
553 |
"best_epoch = 0" |
|
|
554 |
] |
|
|
555 |
}, |
|
|
556 |
{ |
|
|
557 |
"cell_type": "code", |
|
|
558 |
"execution_count": null, |
|
|
559 |
"metadata": {}, |
|
|
560 |
"outputs": [], |
|
|
561 |
"source": [ |
|
|
562 |
"best_model, best_val_acc, best_epoch = train_single_loss(model, x_train, y_train, \n", |
|
|
563 |
" x_val, y_val, x_test, y_test, loss_fn=loss_fn_cls, lr=lr, weight_decay=weight_decay, \n", |
|
|
564 |
" amsgrad=True, batch_size=batch_size, num_epochs=num_epochs, \n", |
|
|
565 |
" reduce_every=reduce_every, eval_every=eval_every, print_every=print_every, verbose=False, \n", |
|
|
566 |
" loss_train_his=loss_train_his, loss_val_his=loss_val_his, loss_test_his=loss_test_his, \n", |
|
|
567 |
" acc_train_his=acc_train_his, acc_val_his=acc_val_his, acc_test_his=acc_test_his, \n", |
|
|
568 |
" return_best_val=True)" |
|
|
569 |
] |
|
|
570 |
}, |
|
|
571 |
{ |
|
|
572 |
"cell_type": "code", |
|
|
573 |
"execution_count": null, |
|
|
574 |
"metadata": {}, |
|
|
575 |
"outputs": [], |
|
|
576 |
"source": [ |
|
|
577 |
"metric = get_result(model, best_model, best_val_acc, best_epoch, x_train, y_train, x_val, y_val, \n", |
|
|
578 |
" x_test, y_test, batch_size, multi_heads, show_results_in_notebook, \n", |
|
|
579 |
" loss_idx=0, acc_idx=0)" |
|
|
580 |
] |
|
|
581 |
}, |
|
|
582 |
{ |
|
|
583 |
"cell_type": "code", |
|
|
584 |
"execution_count": null, |
|
|
585 |
"metadata": {}, |
|
|
586 |
"outputs": [], |
|
|
587 |
"source": [ |
|
|
588 |
"loss_his_all.append([loss_train_his, loss_val_his, loss_test_his])\n", |
|
|
589 |
"acc_his_all.append([acc_train_his, acc_val_his, acc_test_his])\n", |
|
|
590 |
"metric_all.append([v[0] for v in metric])\n", |
|
|
591 |
"confusion_mat_all.append([v[1] for v in metric])" |
|
|
592 |
] |
|
|
593 |
}, |
|
|
594 |
{ |
|
|
595 |
"cell_type": "markdown", |
|
|
596 |
"metadata": {}, |
|
|
597 |
"source": [ |
|
|
598 |
"# Factorization AutoEncoder" |
|
|
599 |
] |
|
|
600 |
}, |
|
|
601 |
{ |
|
|
602 |
"cell_type": "code", |
|
|
603 |
"execution_count": null, |
|
|
604 |
"metadata": {}, |
|
|
605 |
"outputs": [], |
|
|
606 |
"source": [ |
|
|
607 |
"def run_one_model(model, loss_weights, other_loss_weights, \n", |
|
|
608 |
" loss_his_all=[], acc_his_all=[], metric_all=[], confusion_mat_all=[],\n", |
|
|
609 |
" heads=[0,1], multi_heads=True, return_results=False, \n", |
|
|
610 |
" loss_fns=loss_fns, other_loss_fns=other_loss_fns, \n", |
|
|
611 |
" lr=lr, weight_decay=weight_decay, batch_size=batch_size, \n", |
|
|
612 |
" num_epochs=num_epochs, reduce_every=reduce_every, eval_every=eval_every, \n", |
|
|
613 |
" print_every=print_every, x_train=x_train, y_train=y_train,\n", |
|
|
614 |
" x_val=x_val, y_val=y_val, x_test=x_test, y_test=y_test,\n", |
|
|
615 |
" show_results_in_notebook=show_results_in_notebook):\n", |
|
|
616 |
" \"\"\"Train a model and get results \n", |
|
|
617 |
" Most of the parameters are from the context; handle it properly\n", |
|
|
618 |
" \"\"\"\n", |
|
|
619 |
" loss_train_his = []\n", |
|
|
620 |
" loss_val_his = []\n", |
|
|
621 |
" loss_test_his = []\n", |
|
|
622 |
" acc_train_his = []\n", |
|
|
623 |
" acc_val_his = []\n", |
|
|
624 |
" acc_test_his = []\n", |
|
|
625 |
" best_model = model\n", |
|
|
626 |
" best_val_acc = 0\n", |
|
|
627 |
" best_epoch = 0\n", |
|
|
628 |
"\n", |
|
|
629 |
" best_model, best_val_acc, best_epoch = train_multiloss(model, x_train, [y_train, x_train], \n", |
|
|
630 |
" x_val, [y_val, x_val], x_test, [y_test, x_test], heads=heads, loss_fns=loss_fns, \n", |
|
|
631 |
" loss_weights=loss_weights, other_loss_fns=other_loss_fns, \n", |
|
|
632 |
" other_loss_weights=other_loss_weights, \n", |
|
|
633 |
" lr=lr, weight_decay=weight_decay, batch_size=batch_size, num_epochs=num_epochs, \n", |
|
|
634 |
" reduce_every=reduce_every, eval_every=eval_every, print_every=print_every,\n", |
|
|
635 |
" loss_train_his=loss_train_his, loss_val_his=loss_val_his, loss_test_his=loss_test_his, \n", |
|
|
636 |
" acc_train_his=acc_train_his, acc_val_his=acc_val_his, acc_test_his=acc_test_his, \n", |
|
|
637 |
" return_best_val=True, amsgrad=True, verbose=False)\n", |
|
|
638 |
"\n", |
|
|
639 |
" metric = get_result(model, best_model, best_val_acc, best_epoch, x_train, y_train, x_val, y_val, \n", |
|
|
640 |
" x_test, y_test, batch_size, multi_heads, show_results_in_notebook, \n", |
|
|
641 |
" loss_idx=0, acc_idx=0)\n", |
|
|
642 |
"\n", |
|
|
643 |
" loss_his_all.append([loss_train_his, loss_val_his, loss_test_his])\n", |
|
|
644 |
" acc_his_all.append([acc_train_his, acc_val_his, acc_test_his])\n", |
|
|
645 |
" metric_all.append([v[0] for v in metric])\n", |
|
|
646 |
" confusion_mat_all.append([v[1] for v in metric])\n", |
|
|
647 |
" \n", |
|
|
648 |
" if return_results:\n", |
|
|
649 |
" return loss_his_all, acc_his_all, metric_all, confusion_mat_all" |
|
|
650 |
] |
|
|
651 |
}, |
|
|
652 |
{ |
|
|
653 |
"cell_type": "code", |
|
|
654 |
"execution_count": null, |
|
|
655 |
"metadata": {}, |
|
|
656 |
"outputs": [], |
|
|
657 |
"source": [ |
|
|
658 |
"decoder_norm = False\n", |
|
|
659 |
"uniform_decoder_norm = False\n", |
|
|
660 |
"print('Plain AutoEncoder model')\n", |
|
|
661 |
"model_names.append('AE')\n", |
|
|
662 |
"model = AutoEncoder(in_dim, hidden_dim, num_cls, dense=dense, residual=residual,\n", |
|
|
663 |
" decoder_norm=decoder_norm, uniform_decoder_norm=uniform_decoder_norm).to(device)\n", |
|
|
664 |
"loss_weights = [1,1]\n", |
|
|
665 |
"other_loss_weights = [0]\n", |
|
|
666 |
"# heads = None should work for all the following; keep this for clarity\n", |
|
|
667 |
"heads = [0,1] \n", |
|
|
668 |
"run_one_model(model, loss_weights, other_loss_weights,\n", |
|
|
669 |
" loss_his_all, acc_his_all, metric_all, confusion_mat_all,\n", |
|
|
670 |
" heads=heads, multi_heads=True, return_results=False, \n", |
|
|
671 |
" loss_fns=loss_fns, other_loss_fns=other_loss_fns, \n", |
|
|
672 |
" lr=lr, weight_decay=weight_decay, batch_size=batch_size, \n", |
|
|
673 |
" num_epochs=num_epochs, reduce_every=reduce_every, eval_every=eval_every, \n", |
|
|
674 |
" print_every=print_every, x_train=x_train, y_train=y_train,\n", |
|
|
675 |
" x_val=x_val, y_val=y_val, x_test=x_test, y_test=y_test,\n", |
|
|
676 |
" show_results_in_notebook=show_results_in_notebook)" |
|
|
677 |
] |
|
|
678 |
}, |
|
|
679 |
{ |
|
|
680 |
"cell_type": "markdown", |
|
|
681 |
"metadata": {}, |
|
|
682 |
"source": [ |
|
|
683 |
"## Add feature interaction network regularizer" |
|
|
684 |
] |
|
|
685 |
}, |
|
|
686 |
{ |
|
|
687 |
"cell_type": "code", |
|
|
688 |
"execution_count": null, |
|
|
689 |
"metadata": {}, |
|
|
690 |
"outputs": [], |
|
|
691 |
"source": [ |
|
|
692 |
"if num_data_types > 1:\n", |
|
|
693 |
" fuse_type = 'sum'\n", |
|
|
694 |
" print('MultiviewAE with feature interaction network regularizer')\n", |
|
|
695 |
" model_names.append('MultiviewAE + feat_int')\n", |
|
|
696 |
" model = MultiviewAE(in_dims=in_dims, hidden_dims=hidden_dim, out_dim=num_cls, \n", |
|
|
697 |
" fuse_type=fuse_type, dense=dense, residual=residual, \n", |
|
|
698 |
" residual_layers='all', decoder_norm=decoder_norm, \n", |
|
|
699 |
" decoder_norm_dim=0, uniform_decoder_norm=uniform_decoder_norm, \n", |
|
|
700 |
" nonlinearity=nn.ReLU(), last_nonlinearity=True, bias=True).to(device)\n", |
|
|
701 |
"else:\n", |
|
|
702 |
" print('AutoEncoder with feature interaction network regularizer')\n", |
|
|
703 |
" model_names.append('AE + feat_int')\n", |
|
|
704 |
" model = AutoEncoder(in_dim, hidden_dim, num_cls, dense=dense, residual=residual, \n", |
|
|
705 |
" decoder_norm=decoder_norm, uniform_decoder_norm=uniform_decoder_norm).to(device)\n", |
|
|
706 |
"\n", |
|
|
707 |
"loss_weights = [1,1]\n", |
|
|
708 |
"other_loss_weights = [1]\n", |
|
|
709 |
"heads = [0,1]\n", |
|
|
710 |
"run_one_model(model, loss_weights, other_loss_weights, \n", |
|
|
711 |
" loss_his_all, acc_his_all, metric_all, confusion_mat_all,\n", |
|
|
712 |
" heads=heads, multi_heads=True, return_results=False, \n", |
|
|
713 |
" loss_fns=loss_fns, other_loss_fns=other_loss_fns, \n", |
|
|
714 |
" lr=lr, weight_decay=weight_decay, batch_size=batch_size, \n", |
|
|
715 |
" num_epochs=num_epochs, reduce_every=reduce_every, eval_every=eval_every, \n", |
|
|
716 |
" print_every=print_every, x_train=x_train, y_train=y_train,\n", |
|
|
717 |
" x_val=x_val, y_val=y_val, x_test=x_test, y_test=y_test,\n", |
|
|
718 |
" show_results_in_notebook=show_results_in_notebook)" |
|
|
719 |
] |
|
|
720 |
}, |
|
|
721 |
{ |
|
|
722 |
"cell_type": "markdown", |
|
|
723 |
"metadata": {}, |
|
|
724 |
"source": [ |
|
|
725 |
"## For multi-view data, add view similarity network regularizer" |
|
|
726 |
] |
|
|
727 |
}, |
|
|
728 |
{ |
|
|
729 |
"cell_type": "code", |
|
|
730 |
"execution_count": null, |
|
|
731 |
"metadata": {}, |
|
|
732 |
"outputs": [], |
|
|
733 |
"source": [ |
|
|
734 |
"if num_data_types > 1:\n", |
|
|
735 |
" # plain multiviewAE; compare it with plain AutoEncoder to see \n", |
|
|
736 |
" # if separating views in lower layers in MultiviewAE is better than combining them all the way\n", |
|
|
737 |
" print('Run plain MultiviewAE model')\n", |
|
|
738 |
" model_names.append('MultiviewAE')\n", |
|
|
739 |
" model = MultiviewAE(in_dims=in_dims, hidden_dims=hidden_dim, out_dim=num_cls, \n", |
|
|
740 |
" fuse_type=fuse_type, dense=dense, residual=residual, \n", |
|
|
741 |
" residual_layers='all', decoder_norm=decoder_norm, \n", |
|
|
742 |
" decoder_norm_dim=0, uniform_decoder_norm=uniform_decoder_norm, \n", |
|
|
743 |
" nonlinearity=nn.ReLU(), last_nonlinearity=True, bias=True).to(device)\n", |
|
|
744 |
"\n", |
|
|
745 |
" loss_weights = [1,1]\n", |
|
|
746 |
" other_loss_weights = [0]\n", |
|
|
747 |
" heads = [0,1]\n", |
|
|
748 |
" run_one_model(model, loss_weights, other_loss_weights, \n", |
|
|
749 |
" loss_his_all, acc_his_all, metric_all, confusion_mat_all,\n", |
|
|
750 |
" heads=heads, multi_heads=True, return_results=False, \n", |
|
|
751 |
" loss_fns=loss_fns, other_loss_fns=other_loss_fns, \n", |
|
|
752 |
" lr=lr, weight_decay=weight_decay, batch_size=batch_size, \n", |
|
|
753 |
" num_epochs=num_epochs, reduce_every=reduce_every, eval_every=eval_every, \n", |
|
|
754 |
" print_every=print_every, x_train=x_train, y_train=y_train,\n", |
|
|
755 |
" x_val=x_val, y_val=y_val, x_test=x_test, y_test=y_test,\n", |
|
|
756 |
" show_results_in_notebook=show_results_in_notebook)" |
|
|
757 |
] |
|
|
758 |
}, |
|
|
759 |
{ |
|
|
760 |
"cell_type": "code", |
|
|
761 |
"execution_count": null, |
|
|
762 |
"metadata": {}, |
|
|
763 |
"outputs": [], |
|
|
764 |
"source": [ |
|
|
765 |
"if num_data_types > 1:\n", |
|
|
766 |
" print('MultiviewAE with view similarity regularizers')\n", |
|
|
767 |
" model_names.append('MultiviewAE + view_sim')\n", |
|
|
768 |
" model = MultiviewAE(in_dims=in_dims, hidden_dims=hidden_dim, out_dim=num_cls, \n", |
|
|
769 |
" fuse_type=fuse_type, dense=dense, residual=residual, \n", |
|
|
770 |
" residual_layers='all', decoder_norm=decoder_norm, \n", |
|
|
771 |
" decoder_norm_dim=0, uniform_decoder_norm=uniform_decoder_norm, \n", |
|
|
772 |
" nonlinearity=nn.ReLU(), last_nonlinearity=True, bias=True).to(device)\n", |
|
|
773 |
" loss_weights = [1,1,1]\n", |
|
|
774 |
" other_loss_weights = [0]\n", |
|
|
775 |
" heads = [0,1,2]\n", |
|
|
776 |
" run_one_model(model, loss_weights, other_loss_weights, \n", |
|
|
777 |
" loss_his_all, acc_his_all, metric_all, confusion_mat_all,\n", |
|
|
778 |
" heads=heads, multi_heads=True, return_results=False, \n", |
|
|
779 |
" loss_fns=loss_fns, other_loss_fns=other_loss_fns, \n", |
|
|
780 |
" lr=lr, weight_decay=weight_decay, batch_size=batch_size, \n", |
|
|
781 |
" num_epochs=num_epochs, reduce_every=reduce_every, eval_every=eval_every, \n", |
|
|
782 |
" print_every=print_every, x_train=x_train, y_train=y_train,\n", |
|
|
783 |
" x_val=x_val, y_val=y_val, x_test=x_test, y_test=y_test,\n", |
|
|
784 |
" show_results_in_notebook=show_results_in_notebook)" |
|
|
785 |
] |
|
|
786 |
}, |
|
|
787 |
{ |
|
|
788 |
"cell_type": "code", |
|
|
789 |
"execution_count": null, |
|
|
790 |
"metadata": {}, |
|
|
791 |
"outputs": [], |
|
|
792 |
"source": [ |
|
|
793 |
"if num_data_types > 1:\n", |
|
|
794 |
" print('MultiviewAE with both feature interaction and view similarity regularizers')\n", |
|
|
795 |
" model_names.append('MultiviewAE + feat_int + view_sim')\n", |
|
|
796 |
" model = MultiviewAE(in_dims=in_dims, hidden_dims=hidden_dim, out_dim=num_cls, \n", |
|
|
797 |
" fuse_type=fuse_type, dense=dense, residual=residual, \n", |
|
|
798 |
" residual_layers='all', decoder_norm=decoder_norm, \n", |
|
|
799 |
" decoder_norm_dim=0, uniform_decoder_norm=uniform_decoder_norm, \n", |
|
|
800 |
" nonlinearity=nn.ReLU(), last_nonlinearity=True, bias=True).to(device)\n", |
|
|
801 |
" loss_weights = [1,1,1]\n", |
|
|
802 |
" other_loss_weights = [1]\n", |
|
|
803 |
" heads = [0,1,2]\n", |
|
|
804 |
" run_one_model(model, loss_weights, other_loss_weights,\n", |
|
|
805 |
" loss_his_all, acc_his_all, metric_all, confusion_mat_all,\n", |
|
|
806 |
" heads=heads, multi_heads=True, return_results=False, \n", |
|
|
807 |
" loss_fns=loss_fns, other_loss_fns=other_loss_fns, \n", |
|
|
808 |
" lr=lr, weight_decay=weight_decay, batch_size=batch_size, \n", |
|
|
809 |
" num_epochs=num_epochs, reduce_every=reduce_every, eval_every=eval_every, \n", |
|
|
810 |
" print_every=print_every, x_train=x_train, y_train=y_train,\n", |
|
|
811 |
" x_val=x_val, y_val=y_val, x_test=x_test, y_test=y_test,\n", |
|
|
812 |
" show_results_in_notebook=show_results_in_notebook)" |
|
|
813 |
] |
|
|
814 |
}, |
|
|
815 |
{ |
|
|
816 |
"cell_type": "code", |
|
|
817 |
"execution_count": null, |
|
|
818 |
"metadata": {}, |
|
|
819 |
"outputs": [], |
|
|
820 |
"source": [ |
|
|
821 |
"with open(f'{result_folder}/{res_file}', 'wb') as f:\n", |
|
|
822 |
" print(f'Write result to file {result_folder}/{res_file}')\n", |
|
|
823 |
" pickle.dump({'loss_his_all': loss_his_all,\n", |
|
|
824 |
" 'acc_his_all': acc_his_all,\n", |
|
|
825 |
" 'metric_all': metric_all,\n", |
|
|
826 |
" 'confusion_mat_all': confusion_mat_all,\n", |
|
|
827 |
" 'model_names': model_names,\n", |
|
|
828 |
" 'split_names': split_names,\n", |
|
|
829 |
" 'metric_names': metric_names\n", |
|
|
830 |
" }, f)" |
|
|
831 |
] |
|
|
832 |
} |
|
|
833 |
], |
|
|
834 |
"metadata": { |
|
|
835 |
"kernelspec": { |
|
|
836 |
"display_name": "Python 3", |
|
|
837 |
"language": "python", |
|
|
838 |
"name": "python3" |
|
|
839 |
}, |
|
|
840 |
"language_info": { |
|
|
841 |
"codemirror_mode": { |
|
|
842 |
"name": "ipython", |
|
|
843 |
"version": 3 |
|
|
844 |
}, |
|
|
845 |
"file_extension": ".py", |
|
|
846 |
"mimetype": "text/x-python", |
|
|
847 |
"name": "python", |
|
|
848 |
"nbconvert_exporter": "python", |
|
|
849 |
"pygments_lexer": "ipython3", |
|
|
850 |
"version": "3.6.5" |
|
|
851 |
} |
|
|
852 |
}, |
|
|
853 |
"nbformat": 4, |
|
|
854 |
"nbformat_minor": 2 |
|
|
855 |
} |